228 research outputs found
Small amplitude lateral sloshing in a cylindrical tank with a hemispherical bottom under low gravitational conditions Summary report
Small amplitude lateral sloshing in cylindrical tank with hemispherical bottom under low gravitational condition
Mathematical and computational studies of equilibrium capillary free surfaces
The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated
Universality for 2D Wedge Wetting
We study 2D wedge wetting using a continuum interfacial Hamiltonian model
which is solved by transfer-matrix methods. For arbitrary binding potentials,
we are able to exactly calculate the wedge free-energy and interface height
distribution function and, thus, can completely classify all types of critical
behaviour. We show that critical filling is characterized by strongly universal
fluctuation dominated critical exponents, whilst complete filling is determined
by the geometry rather than fluctuation effects. Related phenomena for
interface depinning from defect lines in the bulk are also considered.Comment: 4 pages, 1 figur
The prescribed mean curvature equation in weakly regular domains
We show that the characterization of existence and uniqueness up to vertical
translations of solutions to the prescribed mean curvature equation, originally
proved by Giusti in the smooth case, holds true for domains satisfying very
mild regularity assumptions. Our results apply in particular to the
non-parametric solutions of the capillary problem for perfectly wetting fluids
in zero gravity. Among the essential tools used in the proofs, we mention a
\textit{generalized Gauss-Green theorem} based on the construction of the weak
normal trace of a vector field with bounded divergence, in the spirit of
classical results due to Anzellotti, and a \textit{weak Young's law} for
-minimizers of the perimeter.Comment: 23 pages, 1 figure --- The results on the weak normal trace of vector
  fields have been now extended and moved in a self-contained paper available
  at: arXiv:1708.0139
Capillary filling with wall corrugations] Capillary filling in microchannels with wall corrugations: A comparative study of the Concus-Finn criterion by continuum, kinetic and atomistic approaches
We study the impact of wall corrugations in microchannels on the process of
capillary filling by means of three broadly used methods - Computational Fluid
Dynamics (CFD), Lattice-Boltzmann Equations (LBE) and Molecular Dynamics (MD).
The numerical results of these approaches are compared and tested against the
Concus-Finn (CF) criterion, which predicts pinning of the contact line at
rectangular ridges perpendicular to flow for contact angles theta > 45. While
for theta = 30, theta = 40 (no flow) and theta = 60 (flow) all methods are
found to produce data consistent with the CF criterion, at theta = 50 the
numerical experiments provide different results. Whilst pinning of the liquid
front is observed both in the LB and CFD simulations, MD simulations show that
molecular fluctuations allow front propagation even above the critical value
predicted by the deterministic CF criterion, thereby introducing a sensitivity
to the obstacle heigth.Comment: 25 pages, 8 figures, Langmuir in pres
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
Droplet shapes on structured substrates and conformal invariance
We consider the finite-size scaling of equilibrium droplet shapes for fluid
adsorption (at bulk two-phase co-existence) on heterogeneous substrates and
also in wedge geometries in which only a finite domain  of the
substrate is completely wet. For three-dimensional systems with short-ranged
forces we use renormalization group ideas to establish that both the shape of
the droplet height and the height-height correlations can be understood from
the conformal invariance of an appropriate operator. This allows us to predict
the explicit scaling form of the droplet height for a number of different
domain shapes. For systems with long-ranged forces, conformal invariance is not
obeyed but the droplet shape is still shown to exhibit strong scaling
behaviour. We argue that droplet formation in heterogeneous wedge geometries
also shows a number of different scaling regimes depending on the range of the
forces. The conformal invariance of the wedge droplet shape for short-ranged
forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.
Recommended from our members
Efficient calculation of two-dimensional periodic and waveguide acoustic Green’s functions
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces
Measurement of Critical Contact Angle in a Microgravity Space Experiment
Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USML-2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium
Recommended from our members
Equilibrium liquid free-surface configurations: Mathematical theory and space experiments
Small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. We describe some of our mathematical results that predict such behavior and that form the basis for physical experiments in space. The results include cases of discontinuous dependence on data and symmetry-breaking type of behavior. 23 refs., 9 figs
- …
