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Efficient calculation of two-dimensional periodic and waveguide
acoustic Green’s functions

K. V. Horoshenkova)

School of Engineering, University of Bradford, Bradford BD7 1DP, United Kingdom

Simon N. Chandler-Wildeb)

Department of Mathematical Sciences, Brunel Unversity, Uxbridge UB8 3PH, United Kingdom

~Received 9 April 2001; revised 6 October 2001; accepted 17 January 2002!

New representations and efficient calculation methods are derived for the problem of propagation
from an infinite regularly spaced array of coherent line sources above a homogeneous impedance
plane, and for the Green’s function for sound propagation in the canyon formed by two infinitely
high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source
contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral.
A pole subtraction technique is used to remove poles in the integrand which lie near the path of
integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific
numerical integration method is proposed. Numerical experiments show highly accurate results
across the frequency spectrum for a range of ground surface types. It is expected that the methods
proposed will prove useful in boundary element modeling of noise propagation in canyon streets and
in ducts, and for problems of scattering by periodic surfaces. ©2002 Acoustical Society of
America. @DOI: 10.1121/1.1460920#

PACS numbers: 43.28.Mw, 43.20.El, 43.50.Jh@ANN#
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I. INTRODUCTION

In the last 10 to 20 years the popularity of numeric
modeling of sound propagation has received a substa
impetus as a result of the continuous increase in comp
speed and storage capacity. The boundary element me
has emerged as a powerful numerical technique for mode
sound propagation in the presence of multiple scattering
diffracting objects with complex shapes. In outdoor acous
two-dimensional versions of the boundary element met
have been exploited to predict the efficiency of noise barr
~e.g., Refs. 1–3! and the effect of building fac¸ades.4 In prin-
ciple, the method is not limited by the extent of the acous
region of interest. However, restrictions are imposed by
size of the available computer memory and execution tim
can be unacceptably slow if the discretization of larg
boundaries at shorter wavelengths is required.

The number of boundary elements required can be
duced drastically by using a Green’s function in the bou
ary integral equation formulation which incorporates analy
cally many of the physical boundary conditions of t
problem. In this paper we propose methods for computa
of the Green’s function for sound propagation in a tw
dimensional canyon/waveguide, occupying the part of
Oxy plane, 0,x,h, y.0, with rigid or sound soft bound
ary conditions onx50 andx5h for y.0 and an impedance
boundary condition ony50, 0,x,h. It is envisaged that
this Green’s function will prove useful for the efficient in
vestigation by boundary element simulations of noise pro
gation in city streets. In this application the infinitely hig
walls at x50 andx5h would represent high rise buildin

a!Electronic mail: k.horoshenkov@bradford.ac.uk
b!Electronic mail: simon.chandler-wilde@brunel.ac.uk
1610 J. Acoust. Soc. Am. 111 (4), April 2002 0001-4966/2002/1

Downloaded 30 May 2013 to 134.225.101.60. Redistribution su
l
ial
er
od
g
d
s
d
rs

c
e
s
r

e-
-
-

n
-
e

-

facades and the impedance boundary condition aty50 a
reflecting or sound absorbing road surface. Boundary
ment discretization would only be required for addition
structures, e.g., balconies and building features, sound
sorbing treatments to building elements, noise barriers,
The actual finite height of building facades could be mode
accurately by imposing an absorbing boundary condition~re-
quiring boundary element discretization! on sections of the
walls at x50 and x5h, starting at the heights where th
buildings finish. The point of using the canyon/wavegui
Green’s function is that, rather than discretizing the whole
the physical boundary, only those parts of the bound
which are perturbations from the boundary conditions for
Green’s function need be discretized, leading to mu
smaller storage and computational requirements. Use
two-dimensional Green’s function implies that the geome
must be a two-dimensional one, invariant in the horizontaz
direction. For a completely 2D problem the sound sour
must also be invariant in thez direction, so that the source
of sound are coherent line sources. The applicability of
boundary element models can, however, be extended to m
general sound sources by partial Fourier transform te
niques. These are discussed, for example, in Refs. 2 an
and predictions of outdoor sound propagation are made
Ref. 2 for point and incoherent line sources of sound usin
2D boundary element code. There has been considerabl
cent interest in making predictions of noise levels, us
mathematical and experimental models, for the type of ur
configuration described in this paragraph—see, e.g., R
4–8. In particular, work by Tang8 illustrates that the acousti
field near a finitely high building facade at a low receiv
position can be predicted accurately using a model wh
assumes that the facade is infinitely high, so that the te
nique proposed above to model finitely high facades ac
11(4)/1610/13/$19.00 © 2002 Acoustical Society of America
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FIG. 1. Sound propagation above a
impedance plane.
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rately may be unnecessary. Tang’s results are supporte
close agreement between his theory and scale m
experiments.8

Computing the canyon/waveguide Green’s function
quires calculation of the combined effect of the multiple
flections in the vertical rigid or sound soft walls atx50 and
x5h. This leads to an initial study of computation of th
field due to an infinite array of periodically spaced po
sources above a flat impedance boundary. The field du
such a periodic array of sources, extending to infinity in b
directions, is usually termed the periodic Green’s functi
This function is utilized widely in the solution by integra
equation methods of problems of acoustic and electrom
netic scattering by structures which are periodic in one
mension only. It is usual to utilize, in the numerical soluti
of such problems, thefree field periodic Green’s function, the
solution to the calculation of the field due to an infinite p
riodic source array in free space, and there is a large lit
ture on the computation of this function, reviewed recently
Ref. 9. In Secs. III and IV we discuss the computation
what may be termed the two-dimensional periodic Gree
function for propagation above an impedance plane. The
ficient calculation of this periodic Green’s function appea
not to have been discussed previously, although its use~and
the use of other half-plane periodic Green’s functions! in
place of the free field periodic Green’s function has be
recommended recently for problems of scattering by o
dimensional periodic surfaces.10,11 In particular, use of the
impedance periodic Green’s function in place of the free fi
function leads to integral equation formulations which a
well-defined for all periods of the scattering surface. As
well known and discussed in Sec. III, the free field perio
Green’s function is undefined for a sequence of values of
periodicity.

The method described for computing the impedance
riodic Green’s function, proposed in the thesis of the fi
author,12 is to compute a finite number of the source con
butions explicitly and represent the contributions from t
remaining ~infinite number of! source contributions as
single Laplace-type integral. This technique, with just
single source contribution computed explicitly, has been p
posed for the much simpler free field periodic Green’s fu
tion in Ref. 13~and see Refs. 14, 15, and 9!. The analysis
presented here derives, for the first time, integral represe
tions for the infinite sum of source contributions for the im
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshe
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pedance case. It is also shown, adapting methods for the
of a single source above an impedance boundary,16 how parts
of the integral, corresponding to poles of the integrand ly
near the path of integration, can be evaluated explicitly
terms of the complementary error function, leaving a mu
smaller and smoother integrand to evaluate numerically.
nally, an explicit numerical integration scheme is propos
and its error analyzed, and it is shown how to select
number of source contributions to be computed explicitly
as to ensure high accuracy of calculation for the integ
terms using only a 22-point quadrature rule. This attention
efficient evaluation is essential for the successful use of
Green’s function in boundary element calculations. The
curacy and efficiency of the calculation method is illustrat
by comparison with an alternative solution to the proble
using normal mode decomposition.

II. THE GREEN’S FUNCTION FOR SOUND
PROPAGATION ABOVE AN IMPEDANCE BOUNDARY

Consider the fundamental situation in which a monof
quency line source~e2 ivt time dependence! is elevated
above a flat boundary with normalized surface admittanceb.
Let Gb(r ,r0) denote the acoustic pressure atr5(x,y) when
the source is atr05(x0 ,y0). We note thatb50 if the bound-
ary is rigid, while Reb.0 if the boundary is an energy
absorbing surface. In the caseb50 the sound field can be
found, as the combination of a direct wave and a wave
flected by the surface~Fig. 1!, to be

G0~r ,r0!52
i

4
H0

(1)~kur02r u!2
i

4
H0

(1)~kur02r 8u!, ~1!

wherer 85(x0 ,2y0) is the position vector of the image o
the source in the planey50, andH0

(1) is the Hankel function
of the first kind of order zero.

In the more general case whenbÞ0, the total fieldGb

can be written as

Gb~r ,r0!5G0~r ,r0!1Pb~r ,r0!, ~2!

where Pb(r ,r0) is a perturbation term, accounting for th
effect of nonzero admittance. ClearlyPb50 if b50. To de-
termine the perturbation termPb , for Reb.0, it is neces-
sary to solve the Helmholtz equation

~D1k2!Pb50, ~3!
1611nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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with the impedance boundary condition ony50,

]

]y
Pb~r ,r0!1 ikbPb~r ,r0!

52 ikbG0~r ,r0!52
kb

2
H0

(1)~kA~x2x0!21y0
2!. ~4!

This can be accomplished by Fourier transform methods
discussed, for example, in Ref. 16. The solution to~3! and
~4! which also satisfies the Sommerfeld radiation conditio

lim
r→`

r 1/2S ]Pb~r ,r0!

]r
2 ikPb~r ,r0! D50, ~5!

is16

Pb~r ,r0!5
ib

2p E
2`

1` eih1
A12s2

A12s2~A12s21b!
e2 isuj2uds,

~6!

wherej25k(x2x0), h15k(y1y0), and the square root is
taken with Re(A12s2)>0 and Im(A12s2)>0.

The representation~6! for Pb(r ,r0) is not suitable for
evaluation by numerical integration as the integrand becom
increasingly oscillatory askur2r0u→`. A standard first step
to a more suitable representation is to substitutes5sinu.
This change of variable transforms expression~6! into

Pb~r ,r0!5
ib

2p E
L

ei (h1 cosu1uj2usin u)

cosu1b
du. ~7!

Here L is the path of integration from (2p/21 i`)
→2p/2→p/2→(p/22 i`) which is shown in Fig. 2. The
integrand has an infinite number of simple poles which oc
at

u56up12pn, nPZ, ~8!

whereup denotes the unique solution of cosu1b50 in p/2
,Reu,p. The pointup lies above or below the real axis
depending on whether Imb.0 or Imb,0, respectively.

In Ref. 16, starting from Eq.~7!, representations forPb

are derived which can be evaluated accurately and efficie
by Gauss–Laguerre quadrature rules. The method emplo
is to deform the path of integration to the steepest desc
path, which connects2p/21 i` to p/22 i`, passing

FIG. 2. The transformation of the integration path.
1612 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. H
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throughu5u0 , whereu0 is the angle of incidence as show
in Fig. 1. This path is given by cos(u2u0)511iv2, 2`,v
,`. Then a pole subtraction technique is employed
smooth the behavior of the integrand on this path.

The methods proposed in Sec. III will make use of th
representation, but a further representation forPb will also
be required. To develop this expression the choice is mad
deform the path of integration to what is the steepest des
path in the case that the angle of incidence isu05p/2. This
transformed path of integrationG connectsi` to (p2 i`),
cutting the real axis atu5p/2, and is defined by

sinu511 iv2, vPR, ~9!

with 0,Reu,p/2 for v,0, p/2,Reu,p for v.0, so that
cosu52vAv222i , with ReAv222i .0. The pathG and the
direction of integration asv increases from2` to 1` are
shown in Fig. 2. Making the deformation of the path of i
tegration we obtain that

Pb
(L)5Pb

(G)1Ps , ~10!

where Pb
(G) is the integral~7! with the path of integration

changed fromL to G and Ps is the contribution accounting
for the residue at the poleup , the only one which can be
crossed in the deformation. Explicitly, whereA12b2 de-
notes the square root with positive real part,

Ps55
b

e2 ih1b

A12b2
ei uj2uA12b2

if Im b,0 and ReA12b2.1,

b

2

e2 ih1b

A12b2
ei uj2uA12b2

if Im b,0 and ReA12b251,

0 otherwise.

~11!

Physically, this term is a surface wave which decays ex
nentially with height above the surface.

The first term on the right-hand side of Eq.~10! can be
represented, via the parametrization~9!, as the integral

Pb
(G)5

bei uj2u

p E
2`

1` e2 ih1
Av222i

Av222i ~b2vAv222i !
e2uj2uv2

dv.

~12!

Splitting the range of integration in~12! and changing the
sign of the variable of integration in the second integral, it
seen that, definingw5vAv222i ,

Pb
(G)5

bei uj2u

p F E
0

` e2 ih1vAv222i

Av222i ~b2vAv222i !
e2uj2uv2

dv

1E
0

` eih1vAv222i

Av222i ~b1vAv222i !
e2uj2uv2

dvG
5

2bei uj2u

p E
0

` b cos~h1w!2 iw sin~h1w!

Av222i ~b22w2!
e2uj2uv2

dv.

~13!
oroshenkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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To finish this section, a similar representation for t
total field from a line monopole placed above the impeda
surface is obtained. The total field is given as

Gb~r ,r0!5G0~r ,r0!1Pb
(G)1Ps . ~14!

Further, in terms of the variablesj2 and h6 , where h2

5k(y2y0), it holds that

G0~r ,r0!52
i

4
$H0

(1)~Aj2
2 1h1

2 !1H0
(1)~Aj2

2 1h2
2 !%.

~15!
is
e

ur
ha
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e
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Using a representation for the Hankel function as a Lapla
type integral ~Ref. 17 formulas 2.13.52 and 2.13.60!, the
function G0 can be represented in a similar form to~13!, as

G0~r ,r0!52
ei uj2u

p E
0

` cos~h1w!1cos~h2w!

Av222i
e2uj2uv2

dv.

~16!

Combining~13!, ~14!, and~16!, it is seen that
Gb~r ,r0!5
ei uj2u

p E
0

`Fw2~cos~h1w!1cos~h2w!!22ibw sin~h1w!

Av222i ~b22w2!
1

b2~cos~h1w!2cos~h2w!!

Av222i ~b22w2!
Ge2uj2uv2

dv1Ps .

~17!
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III. PROPAGATION OF SOUND FROM AN INFINITE
NUMBER OF PERIODICALLY SPACED SOURCES

Consider the problem of an infinite number of equid
tantly spaced sources elevated at the same height abov
impedance plane as shown in Fig. 3, at positionsr l

5(xl ,y0), l 50,1,. . . , wherexl5x012hl and 2h is the dis-
tance between adjacent sources. Suppose that the so
have the same unit strength but allow the possibility t
there is a phase shift of 2Ha between adjacent source
whereH5kh and a is some fixed real number. Using th
same notation as in Sec. II, the resultant field at an arbit
observation pointr5(x,y) can be written as the superpos
tion of the contributions from all the sources as

Gb
P~r ,r0 ;a!5(

l 50

`

e22i l aHGb~r ,r l !. ~18!

Provided Reb.0 ~the boundary is energy absorbin!
and the source and receiver remain close to the ground
face, Gb(r ,r l) decays, as the distance between source
receiver increases, at a rate which is faster than in free-fi
conditions. A full far-field asymptotic expansion forGb ,
quantifying this behavior, is given in Ref. 18. The leadi
asymptotic behavior can also be seen directly from~17!.
Note first thatPs decays exponentially asux2x0u→`. The
integral in ~17! has the form

E
0

`

Q~v2!e2uj2uv2
dv5

1

2 E0

`

s21/2Q~s!e2uj2usds,

FIG. 3. The set of periodically spaced sources above the impedance bo
ary.
-
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t

ry

ur-
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where the functionQ has the asymptotic behaviorQ(s)
;as ass→0, where

a5
A22i

2b2 @424ibh11b2~h1
2 2h2

2 !#.

It follows from Watson’s lemma~e.g., Ref. 19 p. 263! that

Gb~r ,r l !5O~ ux2xl u23/2!

as ux2xl u→` with y and y0 fixed. This rate of decay en
sures that the infinite series~18! is absolutely convergent
which in turn ensures that the validity of the interchange
integration and infinite summation in the manipulations b
low is valid, at least for the case Reb.0.

The summation corresponding to~18! in the free-field
case is studied extensively in the literature: this work h
been clearly reviewed by Linton.9 This summation is

Gf
P~r ,r0 ;a!5(

l 50

`

e22i l aHGf~r ,r l !, ~19!

whereGf is the standard free-field Green’s function, defin
by Gf(r ,r l)52 ( i /4) H0

(1)(kur2r l u). In contrast to~18!, in
the case Reb.0, the series~19! is only conditionally con-
vergent, since the Hankel function has the asymptotic beh
ior H0

(1)(t);A2/ptei (t2p/4) ast→`. Indeed, ifa50, ~19! is
divergent to infinity if the wavelength divides the period, i.e
if H is an integer multiple ofp. More generally, for an arbi-
trary value ofa, the series~19! diverges ifH(12a) is an
integer multiple ofp. The same restriction, that the series
only conditionally convergent, or divergent in the case th
H(12a) is a multiple ofp, carries over to~18! in the case
b50. Physically, this divergence corresponds to cases wh
the contributions from far source points are all in phase, a
combine to give an infinite pressure field at the receiver
sition.

The firstN terms can be extracted from the sum~18! to
nd-
1613nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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proposed in Ref. 16. The remaining sum, fromN to infinity,
can be expressed as a single infinite integral by replacingGb

by its integral representation~17!, reversing the order o
summation and integration, and finally evaluating the su
mation under the integral sign, which is now a geome
series. ProvidedN is chosen large enough so thatxN.x, the
resulting expression is
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Gb
P~r ,r0 ;a!5 (

l 50

N21

e22i l aHGb~r ,r l !

1
2ei (jN22NaH)

p E
0

`

f ~v2!e2jNv2
dv1Ps

P ,

~20!

wherejN5k(xN2x), the functionf is defined implicitly by
f ~v2!5
w2 cos~h0w!cos~hw!2b2 sin~h0w!sin~hw!2 ibw sin~h1w!

Av222i ~b22w2!~12e22H(v22 i (12a))!
, ~21!
, in

ture
d
-

he
with h05ky0 andh5ky, andPs
P is the sum of the surface

wave contributions, given by

Ps
P55

b
e2 ih1bei (jN

A12b222NaH)

A12b2
@12e2iH (A12b22a)#21

if Im b,0 and ReA12b2.1,

b

2

e2 ih1bei (jN
A12b222NaH)

A12b2
@12e2iH (A12b22a)#21

if Im b,0 and ReA12b251,

0 otherwise.
~22!

A discussion of the choice ofN in ~20! follows in Sec. III B.

A. Pole subtraction

As mentioned already, in the representation~20! for
Gb

P(r ,r0 ;a) the contributions from the termsGb(r ,r l) in the
finite summation can be evaluated using the method p
posed in Ref. 16. This method representsGb(r ,r l) as the
sum of an expression involving the complementary er
function of complex argument and a Laplace-type integ
which, as shown in Ref. 16, can be evaluated accurately
efficiently using a 22-point Gauss–Laguerre quadrature r
To evaluateGb

P(r ,r0 ;a) using Eq.~20!, it remains to con-
sider the evaluation of the integral on the right-hand side
that equation, for which a similar integration scheme will
developed.

It is necessary first to examine the singularities of
function f (z) and their proximity to the path of integratio
~the positive real axis!. This is important because the acc
racy of numerical integration methods is seriously affecte
a singularity in the integrand lies on or near the integrat
path. It will become apparent that the only singulariti
which may lie close to the path of integration are pol
Further, a method of subtraction of the poles nearest to
positive real axis will be described leading to alternative r
resentations of the integral in~20! as the sum of a Laplace
type integral and expressions involving the complement
o-

r
l

nd
e.

f

e

if
n

.
e
-

y

error function of complex argument. In these expressions
contrast to the original integral in~20!, the integrand is a
smooth function for all values ofb andH.

Substitutingt5jNv2 in the integral in~20!, this equation
becomes

Gb
P~r ,r0 ;a!5 (

l 50

N21

e22i l aHGb~r ,r l !1
ei (jN22NaH)

pAjN

I 1Ps
P ,

~23!

where

I 5E
0

`

f ~ t/jN!t21/2e2tdt. ~24!

This integral can be approximated by Gaussian quadra
with weight functiont21/2e2t, in other words, by generalize
Gauss–Laguerre quadrature,20 and this will be accurate, us
ing a rule with a small number of points, providedf (t/jN) is
smooth as a function oft on the interval of integration, 0
<t,`. This will be the case providedf (t/jN) does not have
singularities close to the positive real axis.

From ~21!, the functionf is given explicitly by

f ~z!5
F~z!

Az22i ~b212iz2z2!~12e22H(z2 i (12a))!
,

~25!

where

F~z!5z~z22i !cos~h0Az~z22i ! !cos~hAz~z22i !!

2b2 sin~h0Az~z22i !!sin~hAz~z22i !!

2 ibAz~z22i ! sin~h1Az~z22i !!. ~26!

The functionF, the numerator in~25!, is an entire function,
i.e., is analytic in the whole complex plane. Provided t
square root in~25! is chosen with ReAz22i .0, Az22i is
analytic in the half-plane Imz,2, which includes the posi-
tive real axis. The remaining singularities off are poles at
the pointsz which are the solutions of the equations

z222iz2b250 ~27!

and

12qe22Hz50, ~28!

whereq5e2iH (12a).
oroshenkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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The solutions of~27! are z5 i (16A12b2). One of
these solutions lies in the half-plane Imz>1. Choosing the
square root so that ReA12b2>0, the other solution, in
Im z<1, is

za5 i ~12A12b2!5 ib2/~11A12b2!. ~29!

Noting thatuzau<ubu2, it becomes clear that this root may l
on or arbitrarily close to the positive real axis, thoughza

Þ0 providedbÞ0. In the numerical results reported in th
paper, the effect of this pole will be ignored ifuReA12b2u
>0.75 or Im (12A12b2)>0.75, in which caseza lies at
least distance 0.75 from the positive real axis. Otherwise
effect of this pole will be subtracted, i.e., the integralI will
be rewritten as

I 5E
0

`

ga~ t/jN!t21/2e2tdt1eaE
0

` t21/2e2t

t/jN2za
dt, ~30!

where

ga~z!5 f ~z!2
ea

z2za
~31!

and

eaªResz5za
f ~z!

52
F~za!

2Aza22i ~za2 i !~12e22H(za2 i (12a))!
, ~32!

with

F~za!5b2@cos~h0b!cos~hb!2sin~h0b!sin~hb!

2 i sin~h1b!#. ~33!

The point of the pole subtraction in~30! is that the second
integral can be evaluated exactly. From Ref. 21, Eqs.~7.1.3!
and ~7.1.4!, it follows, for arbitrary complexzÞ0, that

E
0

` t21/2e2t

t/jN2z
dt52 ip

jN

AjNz
e2AzjN@erfc~2 iAzjN!2C~z!#,

~34!

where, if z is not on the positive real axis, then the squa
roots in~34! are to be taken with positive imaginary part.
Eq. ~34!, erfc is the complementary error function of com
plex argument, defined by erfcw5(2/Ap)*w

`e2t2dt, and

C~z!5H 1, z.0,

0, otherwise.
~35!

Note thatC(z)51 if and only if Imb,0 and ReA12b2

51, which is the same condition as selects the second a
native in Eq.~22!.

The solutions of~28!, which are the other poles off , are

z5 i
argq12pn

2H
, nPZ, ~36!

where argq denotes the principal argument ofq, in the range
2p,argq<p. The closest of these poles to the positive r
axis is that at
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshe
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zb5 i
argq

2H
. ~37!

The other poles have imaginary parts satisfyinguIm zu
>p/(2H), and so lie at least this distance from the real ax
In the numerical results shown below the pole atz5zb is
subtracted if 0,argq<p/4, in which case 0,uIm zbu
<p/(8H). @If argq50, then the apparent singularity, atz
5zb50, is removable sinceF(0)50.# The same technique
for removing the pole is utilized as has been described ab
for the pole atz5za , noting that

ebªResz5zb
f ~z!5

F~zb!

2Azb22i ~b22zb
212izb!H

. ~38!

If only the pole atz5zb is to be subtracted, the resultin
expression for the integral, Eq.~44!, is similar to ~30!, but
with ga(t/jN) replaced bygb(t/jN), where the functiongb is
defined by

gb~z!5 f ~z!2
eb

z2zb
. ~39!

In the case that both the poles atza and zb are to be sub-
tracted, thenga(t/jN) is replaced bygab(t/jN), where

gab~z!5 f ~z!2
ea

z2za
2

eb

z2zb
. ~40!

To sum up, the following expressions for the integralI are
proposed for Reb.0, the different expressions below de
pending on whether the polesza and zb are, or are not,
‘‘close’’ to the positive real axis, where, as mentioned abo
it is proposed to treatza as lying close to the positive rea
axis if Reza.20.75 and uIm zau,0.75, i.e., if Im (1
2A12b2).0.75 anduReA12b2u,0.75, andzb as lying
close to the real axis ifuIm zbu,p/(8H), i.e., if uargqu,p/4.
In each of the cases the integral to be calculated takes
form *0

`g(t/jN)t21/2e2tdt, for some functiong. The pole
subtraction carried out ensures that, in each case, the
grandg(t/jN) is bounded and analytic, as a function oft, in
a neighborhood of the positive real axis, namely the s

Ret.23jN/4, uIm tu<min(3
4,p/(8H))jN . Thus it can be

ensured that in each case singularities of the integrand do
lie closer than distance34 from the positive real axis by
choosingN so thatjN>max(1,6H/p). In other words, since
jN5j02j12HN, where j05kx0 and j5kx, N is to be
chosen in the range

N>maxS 1

2H
,

3

p D2
j02j

2H
. ~41!

The four cases to be considered and the respective inte
representations to be used for numerical evaluation are
follows. Recall that, in Eqs.~43!–~45!, the square roots
AzajN andAzbjN are to be taken with argument in the ran
@0,p).

I. Neither of the poles are close to the positive real a
~or zb50 andza is not close to the positive real axis!:

I 5E
0

`

f ~ t/jN!t21/2e2tdt. ~42!
1615nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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II. The poleza is close to the positive real axis and eith
zb50 or zb is not close to the real axis:

I 5E
0

`

ga~ t/jN!t21/2e2tdt1
i eapjN

AzajN

e2zajN

3@erfc~2 iAzajN!2C~za!#. ~43!

III. Only the pole zb is close to the real axis~but zb

Þ0!:

I 5E
0

`

gb~ t/jN!t21/2e2tdt1
i ebpjN

AzbjN

e2zbjN

3erfc~2 iAzbjN!. ~44!

IV. Both the polesza andzb are close to the positive rea
axis ~but zbÞ0 andzaÞzb!:

I 5E
0

`

gab~ t/jN!t21/2e2tdt1 ipjN

3F ea

AzajN

e2zajN@erfc~2 iAzajN!2C~za!#

1
eb

AzbjN

e2zbjN erfc~2 iAzbjN!G . ~45!

The above formulas apply if Reb.0 ~the boundary is
energy absorbing!. An important special case not covere
above is that of a rigid boundary withb50. In this case, as
noted earlier, the series~19! is divergent if H(12a) is a
multiple of p, in other words, ifq51. If qÞ1, then it can be
shown, via arguments similar to those used to derive
representation~20!, that the summation~19! is ~condition-
ally! convergent, and has the value given by~23! and ~24!,
with the functionf simplifying in this case to

f ~z!52
cos~h0Az~z22i !!cos~hAz~z22i !!

Az22i ~12e22H(z2 i (12a))!
.

B. Numerical integration and choice of the parameter
N

As indicated earlier, it is proposed to evaluate each
the integrals in Eqs.~42!–~45! by generalized Gauss
Laguerre quadrature. Letx1,n ,x2,n , . . . ,xn,n denote the ab-
scissae andw1,n ,w2,n , . . . ,wn,n the weights of then-point
Gauss–Laguerre quadrature rule for the weight funct
t21/2e2t. These weights and abscissae are tabulated fon
51,2,. . . ,15 inRef. 20 and forn51,2,3 in Ref. 16, or can
be calculated using a standard subroutine library.22 Let g
denote one of the functionsf , ga , gb , or gab . Then the
numerical integration method employed will be to appro
mate

JªE
0

`

g~ t/jN!t21/2e2tdt'Jm,nª(
j 51

m

wj ,ng~xj ,n /jN!.

~46!

For m5n the approximation,Jm,n , is the n-point Gauss–
Laguerre rule approximation to the integralJ. For 1<m
1616 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. H
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,n, Jm,n is an approximation to the Gauss–Laguerre r
obtained by neglecting the lastn2m weights and abscissae
Since the weightswj ,n become extremely small forj andn
large, Jm,n can be just as accurate asJn,n while needing
fewer terms in the summation~46! and thus being cheaper t
evaluate.

The error in the numerical integration scheme propo
will now be examined. For brevity this error will be est
mated only for the integral~42! in case I, whereg5 f andza

is at least distancep/(8H) and zb is at least distance 0.75
from the positive real axis. However, a similar analysis a
nearly identical criteria for accuracy apply in the other thr
cases—cf. Ref. 16, Appendix B, and Ref. 23.

The error, uJ2Jm,nu, in the numerical integration
method has two components. One component arises from
neglect of the lastn2m weights and abscissae. The effect
this is equivalent to setting the integrand to zero beyond
mth abscissa,xm,n . For this to be accurate it is necessary th
the integrandf (t/jN)t21/2e2t be small fort.xm,n . To sim-
plify the task of boundingf the assumption will be made tha
ubu<1, which range ofb includes the values usually of in
terest in applications of the impedance boundary condition
outdoor sound propagation, whereb is the relative surface
impedance of the ground surface. Recalling that the c
considered is that in whichza and zb are not close to the
positive real axis, it then follows that, forz>0,

u12e22H(z2 i (12a))u>
1

&
, uAz22i u>&,

ub212iz2z2u> 3
4 ,

and, wheref5uz(z22i )u,

uz~z22i !/~b212iz2z2!u<
f

max~ 3
4 ,f21!

<
7

3
.

Further,

ucos~h0Az~z22i !!u<eh0p(z),

where p(z)5uIm Az(z22i )u. The same bound applies t
usin(h0Az(z22i ))u, and analogous bounds apply to the oth
sine and cosine terms in~26!. Applying the above inequali-
ties to f defined by~25!, it follows that

u f ~z!u<6eh1p(z), ~47!

for z>0 andubu<1, with

p~z!5uIm Az~z22i !u5H 2z

z1Az214
J 1/2

<min~1,z1/2!.

Thus, fort.0,

u f ~ t/jN!t21/2e2tu<6t21/2exp~h1 min~1,At/jN!2t !.

If jN is chosen such thatjN>h1
2 /xm,n , it then follows that

u f ~ t/jN!t21/2e2tu<6xm,n
21/2exp~h1 min~1,Axm,n /jN!2xm,n!,

~48!

for t>xm,n .
In the numerical results the values
oroshenkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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n540, m522, ~49!

are chosen, for whichxm,n530.26. Then the criterion~48!
ensures that

u f ~ t/jN!t21/2e2tu<1029,

for t>xm,n , providedh1<9.4 or

jN>0.34h1
2 . ~50!

The other contribution to the error,uJ2Jm,nu, is that inherent
in the Gauss–Laguerre quadrature formula. In the casy
5y050, whenh5h05h150, provided the criterion~41! is
satisfied so that the integrand is analytic within at least d
tance 0.75 of the positive real axis, it is not difficult to app
Ref. 16, Theorem 3~i!, to show that the error in then-point
Gauss–Laguerre rule,uJ2Jn,nu, tends to zero asn→`, uni-
formly with respect toN andb, for ubu<C, whereC.0 is
a positive constant. As remarked above, we adopt the va
of n andm given by ~49!, whose values proved accurate
Ref. 16 for very similar integrands.

When h1.0, the integrand has additional oscillato
terms: a typical such term is sin(h1Az(z22i )), the oscilla-
tory behavior of which is determined, forz>0, by

q~z!ªReA~z~z22i !5z1/2Az1Az214

2
.

As h1 increases the integrand becomes more oscillatory
a greater density of quadrature points is needed to sam
this oscillation. A heuristic criterion for the choice ofN is to
insist thatjN be chosen large enough so that the Nyqu
sampling criterion is amply satisfied in an average sense.
abscissae, sampling the integrand in~42!, are distributed on
the interval @0,xm,n /jN# and the number of oscillations i
this interval ish1q(xm,n /jN)/(2p). ChoosingjN so that
there are, on average, at least 11 integration points per o
lation leads to the heuristic criterion for the choice ofjN that

c̃q~xm,n /jN!<1, ~51!

wherec̃511h1 /(2pm). Now, for z>0,

z1/2max~1,z1/2!<q~z!<q̃~z!<1.5z1/2max~1,z1/2!,

whereq̃(z)ªz1/2(z214)1/4. Thus a simpler and only slightly
stricter criterion is obtained by replacing the functionq by q̃
in ~51!. This slightly stricter criterion holds if and only if

jN>j*ªxm,nc̃A2c̃21A114c̃4. ~52!

Clearly j* .2xm,nc̃2. With the values ofn andm proposed
in Eq. ~49!, xm,n530.26 so thatj* .2xm,nc̃250.38h1

2 .
Thus~50! is satisfied if~52! holds. Therefore, for the value
n540 andm522 suggested, the various proposed crite
for the choice ofN, Eqs.~41!, ~50!, and~52!, are all satisfied
by choosing

N>11
1

2H
max~1,j* !2

j02j

2H
. ~53!
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IV. THE PERIODIC AND CANYON GREEN’S
FUNCTIONS

The previous section details formulas and a numer
scheme for computing the field due to the infinite array
sources~18!. As discussed in the Introduction, it is muc
more frequently of interest to be able to compute the fi
due to an array of sources extending to infinity in both
rections, that is, to be able to compute the function

Gb
DP~r ,r0 ;a!5 (

l 52`

`

e22i l aHGb~r ,r l !. ~54!

Of course, the summation~54! can be written as two sums o
the form ~18!. Precisely, letx̃lª2x2x2 l and r̃ lª( x̃l ,y0)
5(2x2x2 l ,y0), for l 50,1,. . . , sothat r̃ l is the reflection
of r2 l in the vertical line throughr . Then

Gb
DP~r ,r0 ;a!52Gb~r ,r0!1(

l 50

`

e22i l aHGb~r ,r l !

1(
l 50

`

e2i l aHGb~r , r̃ l !

52Gb~r ,r0!1Gb
P~r ,r0 ;a!1Gb

P~r , r̃0 ;2a!.

~55!

Without loss of generality it will be supposed in th
remainder of this section thatr0 is the closest of the source
r l , l 50,61, . . . , tor , so that

uj2j0u<H. ~56!

Thenx1.x andx̃1.x, so that, forN51,2,. . . , Gb
P(r ,r0 ;a)

and Gb
P(r , r̃0 ;2a) have the representations given by~23!

and ~24!. The calculation of the integral~24! in the four
different cases, using Gauss–Laguerre quadrature, has
discussed in the last two subsections.@Of course, for the
computation ofGb

P(r , r̃0 ;2a), jN must be replaced with
j̃Nªk( x̃N2x)5j2j012HN and a with 2a.# Given that
~56! holds, the criterion~53! proposed for the choice ofN is
satisfied for the computation of bothGb

P(r ,r0 ;a) and
Gb

P(r , r̃0 ;2a) if N is chosen so that

N>1.51
1

2H
max~1,j* !. ~57!

The functionGDP(r ,r0 ;a) may be termed theperiodic im-
pedance Green’s functionfor the Helmholtz equation in the
upper half-plane, since it satisfies the impedance bound
condition on the ground surface and, clearly, has the per
icity property that

GDP~r12hi,r0 ;a!5e22iaHGDP~r ,r0 ;a!,

where i is a unit vector in thex direction. The periodic
Green’s function,GDP(r ,r0 ;a), has applications in its own
right, notably to problems of plane wave scattering by pe
odic structures~in which applicationa is the sine of the
angle of incidence!, but can also be used to construct so
tions to problems of sound propagation in waveguides.

Consider the sound field generated by a point source
sound atr0 in the canyon formed by two parallel vertica
rigid walls emerging from an impedance ground surfa
1617nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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Clearly~see Fig. 4!, the problem can be solved by computin
the positions of the infinite array of image sources formed
reflection in the rigid walls. It can be seen in Fig. 4 that the
images form two doubly infinite periodic arrays, so that t
effect of the rigid walls is to introduce additional sources
r l , l 561,62, . . . , and atr l* , for l 50,61,62, . . . , where
r l* 5r0* 12hl i and r0* is the image ofr0 in the wall at x
50, i.e.,r0* 5(2x0 ,y0). Thus the solution to this problem o
noise propagation in a canyon can be given in terms of
periodic Green’s function,Gb

DP(r ,r0 ;a), with a50, as

Gb
can~r ,r0!5Gb

DP~r ,r0 ;0!1Gb
DP~r ,r0* ;0!. ~58!

In the case where the vertical walls are sound soft~i.e., the
sound field vanishes on the vertical surfaces!, the solution
can be given in terms of the periodic Green’s function,Gb

DP ,
as

Gb
DP~r ,r0 ;0!2Gb

DP~r ,r0* ;0!,

and, in the case when one wall is rigid~that atx50! and the
other sound soft, the solution is

Gb
DP~r ,r0 ;p/~2H !!2Gb

DP~r ,r0* ;p/~2H !!.

FIG. 4. The 2-D canyon/waveguide, showing the source and its image
the vertical walls.
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To sum up, to compute the solution,Gb
can(r ,r0), to the

canyon problem, the Green’s function is expressed in te
of the periodic Green’s function via Eq.~58!. The periodic
Green’s function is, in turn, expressed in terms ofGb

P

through Eq.~55!. Provided~56! holds, the termsGb
P(r ,r0 ;a)

andGb
P(r , r̃0 ;2a) in ~55! can be calculated using Eqs.~23!

and ~24!, with the Green’s functionGb in ~23! calculated
using the method of Ref. 16. The calculation of the integ
~24! is carried out via four different representations, d
cussed in Sec. III A. Specifically, it has been proposed t
the representations~42!–~45! be used in the four differen
cases, with the integrals in these formulas evaluated u
the Gauss–Laguerre quadrature rule~46!, with n and m
given by~49!, and the parameterN chosen to be the smalles
positive integer satisfying~57!.

V. NUMERICAL RESULTS

Results are presented first of all illustrating the effect
the choice ofN, the number of source contributions to b
evaluated explicitly in Eq.~20!, on the accuracy of the cal
culations. The fieldGb

P(r ,r0 ;a) due to an infinite array of
sources is evaluated using Eq.~23!, with the integralI evalu-
ated using Eqs.~42!–~45!, the evaluation carried out as pro
posed in Sec. III B by the numerical integration formula~46!
with the choices~49! for m andn. Results are shown for the
casea50. Plotted in Fig. 5 isDGb

P , the absolute value o
the difference between two calculations ofGb

P(r ,r0 ;a) using
different values forN ~N5N1 andN5N2!. Having in mind
applications in outdoor sound propagation, the surface
pedanceb is chosen to be that appropriate to a rigidly back
100-mm layer of porous road surface. The acoustical pr
erties of the porous layer as a function of frequency are
culated using the Attenborough model.24,25This model speci-

in
f

f

FIG. 5. Absolute error as a function o
the parameterN calculated for sound
propagation above 100-mm layer o
porous road surface.
oroshenkov and S. N. Chandler-Wilde: Waveguide Green’s functions

bject to ASA license or copyright; see http://asadl.org/terms



J. Acoust. Soc. Am.
TABLE I. Values of the nonacoustic parameters used in the calculations.

Material
Flow resistivity,
Rb (Pa s m22)

Porosity,
V

Tortuosity,
q2

Shape factor,
sp

Thickness,
d ~m!

Reflective
ground

23107 0.1 1.06 0.5 0.1

Porous road
surface

3500 0.335 1.91 0.21 0.1

Highly absorbing
ground

23104 0.9 1.06 0.5 0.1
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fies the acoustical admittance (bb) and wave number (kb) of
the porous layer in terms of its porosity (V), tortuosity (q2),
flow resistivity (Rb), and a pore shape factor (sp), giving25

bb5
V

q
gb~A2 ilA!, kb5qkgb~A2 ilA!,

wherelA5(1/2sp)(8r0q2v/Vs)1/2 andr0 is the air density.
The functions gb and gk are defined by gb(z)
ªAgc(z)/gr(z) and gk(z)ªAgc(z)gr(z), in terms of the
auxiliary functionsgr(z)ª@12S(z)#21 and gC(z)ª11(g
21)S(NPr

1/2z). In these last expressionsg51.4 is the ratio of
specific heats andNPr50.708 is the Prandtl number, whileS
is the function defined by

S~z!ª
2J1~ iz!

izJ0~ iz!
5

2I 1~z!

zI0~z!
,

with Jn the Bessel function of ordern andI n the correspond-
ing modified Bessel function. In terms ofbb and kb the
impedance of the layer is

b5bbtanh~2 ikbd!,

and the values of the nonacoustical parameters for the po
road surface are given in Table I. The positions of the sou
and the receiver were chosen to bex055.75 m, y052.0 m,
x51.5 m, andy51.5 m. The value ofh was set to 17 m, so
that there is a spacing of 34 m between adjacent source

The error in Fig. 5 is mainly confined to the rang
10214,DGb

P,10212, but increases at high frequency whe
h15k(y1y0) is large (h1'640 at 10 000 Hz!. Results ac-
curate to 10212 are obtained at almost all frequencies up
2000 Hz withN52, at frequencies up to 5000 Hz withN
54, and across the frequency range withN58. At the high-
est frequency each doubling ofN reduces the error by a
factor of about 1000. The criterion proposed to ensure h
accuracy,~20!, suggests thatN should increase approxi
mately in proportion toh1

2 /H5k(y1y0)2/h. Specifically it
recommends, for this geometry,N>5.9 at 2000 Hz,N
>13.5 at 5000 Hz, andN>26.2 at 10000 Hz.

The remaining figures show calculations of the cany
waveguide Green’s functionGb

can(r ,r0). A method for com-
puting Gb

can efficiently has been proposed in Sec. IV. A
alternative expression forGb

can can be obtained as a norm
mode decomposition~NMD!,26,27 namely,

Gb
can~r ,r0!5

1

2iH (
n50

`
xn

zn
cos~knx0!cos~knx!

3@eikznuy2y0u1Rneikzn(y1y0)#, ~59!
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wherexn51 whenn50, xn52 for all other values ofn,
kn5np/h, andzn5A12kn

2/k2, with Im zn.0 for kn.k. In
Eq. ~59! Rn is the reflection coefficient for moden from the
impedance ground, given by

Rn5
zn2b

zn1b
. ~60!

Values ofGb
can(r ,r0) calculated using the method describ

in Sec. IV, with n and m given by ~49!, and N selected
according to the criterion~57!, are compared in Figs. 6–
with the predictions of normal mode decomposition calcu
tions, using the first 2000 terms in~59!. Precisely, what is
plotted in these figures is a sound pressure level given b

L520 log10~AkuGb
can~r ,r0!u!. ~61!

~The factorAk ensures that the sound pressure level close
the source is approximately constant across the freque
range.! The three figures show predictions for differe
ground types~and so different variations ofb with fre-
quency!, namely a reflecting boundary, a porous road s
face, and a highly absorbing ground, with parameter val
as shown in Table I. The positions of the source and
receiver were chosen to bex055.75 m, y052.0 m, x
51.5 m andy51.5 m and the width of the canyon was s
to h517 m. Figures 6–8 demonstrate excellent agreem
between the results of the two methods throughout the s
tral range considered.

Regarding the relative computational efficiency of t
two methods the following comments can be made. In S
IV a specific quadrature rule for numerical integration h
been suggested, withm522 ~m is the number of evaluation
of the integrand required!. With m fixed the cost of the cal-
culation method depends only onN, the number of source
contributions calculated explicitly. The criterion~57!, for se-
lecting N to ensure a high accuracy, forcesN to increase
approximately in proportion toh1

2 /H5k(y1y0)2/h, al-
though with a small constant of proportionality, and we ha
seen in Fig. 5 that withN58 very accurate results~error
10212! are obtained at even the highest frequency whey
1y0'100 wavelengths andk(y1y0)2/h'130.

The representation~59! as a normal mode decompos
tion is to some extent complementary. For accurate result
the propagating modes~those for whichkn<1) and at least
some of the evanescent modes (kn.1) must be included in
the summation. There are'kh/p propagating modes so tha
this is the minimum number of mode contributions to
included, and so the cost is at least proportional tokh. In
addition, whenkuy2y0u is small the series converges slowl
1619nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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FIG. 6. Comparison of predictions us
ing the method proposed in Sec. IV
and the method of normal mode de
composition for sound propagation
over reflective ground.
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when kuy2y0u50 this convergence is very slow so that
very large number of evanescent modes need to be inclu
in the summation, though this additional difficulty can
ameliorated by applying a Kummer’s transformation9 which
accelerates the convergence of the series and reduces
stantially the number of evanescent modes that need to
summed explicitly.9,27

The new representation proposed has a cost linearly
pendent onN while the cost of evaluating the normal mod
1620 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. H
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be
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decomposition representation is proportional to the num
of normal modes required for accurate results. Thus the n
method will be faster when the ratioN/~No. of normal
modes required! is small enough. In view of the above re
marks, this ratio is <C@k(y1y0)2/h#/@kh#5C@(y
1y0)/h#2, for some positive constantC, so that the new
method of Sec. IV should be more effective for problem
whereh is large compared toy1y0 . To illustrate this, com-
putational times required by the two methods are given
-

-

FIG. 7. Comparison of predictions us
ing the method proposed in Sec. IV
and the method of normal mode de
composition for sound propagation
over a porous road surface.
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FIG. 8. Comparison of predictions us
ing the method proposed in Sec. IV
and the method of normal mode de
composition for sound propagation
over a highly absorbing porous sur
face.
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Table II. The CPU times tabulated are for the same geom
as for Fig. 5, i.e.,x055.75 m, y052.0 m, x51.5 m, y
51.5 m, and h517 m. As indicated above, the norm
mode decomposition requires calculation of all the propag
ing modes and at least some of the evanescent mode
accurate calculations, how many depending on the size
kuy2y0u and on the acceleration procedure used. The th
column shows CPU times for normal mode decomposit
calculations using the same number of evanescent as pr
gating modes, so that approximately 2kh/p modes are com-
puted and thus the CPU time increases approximately
early with frequency. The remaining columns show the C
times required for the method described in Sec. IV, withn
andm given by ~49!. Specifically, the fourth column show
calculations withN52, which was found in Fig. 5 to give
errors at most 10212 for frequencies up to 2000 Hz, and th
fifth column shows results withN54, which gave errors a
most 10212 up to 5000 Hz. It can be seen that, for this g
ometry, which has a small value of@(y1y0)/h#2 of approxi-
mately 0.04, and at higher frequencies where a large num
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 K. V. Horoshe
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of modes is required, the new calculation method does
deed require less CPU time to compute accurate results

VI. CONCLUSIONS

In this paper mathematical expressions for tw
dimensional calculations of the sound field due to a mo
frequency point source in a canyon/waveguide have b
derived, the canyon occupying the strip 0,x,H, y.0 in
the Oxy plane, and having rigid or sound soft walls atx
50 andx5H and an impedance boundary condition ony
50. In the expressions proposed for this Green’s functi
and for the related periodic Green’s function, the infin
sums of source contributions due to the multiple reflectio
from the walls are reduced to single integral terms. Furt
representations are proposed in which poles close to the
tegration path are removed and their contributions evalua
analytically, which greatly improves the accuracy of nume
cal integration. The error in numerical integration has be
examined carefully, a specfic 22-point quadrature rule
TABLE II. CPU times for the canyon problem of Fig. 5, withx055.75 m, y052.0 m, x51.5 m, y51.5 m,
h517 m, and a 100-mm layer of porous road surface.

Frequency
~Hz!

Normal mode decomposition New calculation method

No. modes CPU time~ms!
N52

CPU time~ms!
N54

CPU time~ms!

125 25 1.46 2.93 3.91
250 50 1.95 2.83 3.91
500 100 2.68 2.92 3.91

1000 200 4.15 2.93 3.90
2000 400 6.83 2.93 3.90
4000 800 12.21 2.93 3.91
8000 1600 38.08 2.92 3.90
1621nkov and S. N. Chandler-Wilde: Waveguide Green’s functions
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been proposed, and a criterion for selection of the param
N ~the number of source contributions to be treated exp
itly ! has been suggested. Numerical experiments show
choosingN according to this criterion, the 22-point quadr
ture rule proposed gives extremely accurate results. The
culation procedure to be followed is summarized at the
of Sec. IV.

The numerical results include comparisons with an al
native representation of the function via normal mode
composition. The new calculation procedure propos
complements this representation which becomes expen
to compute whenkh is large~k the wave number andh the
width of the waveguide! and/or whenkuy2y0u is small (uy
2y0u the difference in heights of source and receiver!. By
contrast, since the cost of the new method depends mainl
N which increases in proportion tok(y1y0)2/h, the new
representations proposed are computationally efficient
long ask(y1y0)2/h is not too large. The results present
show that very small absolute errors (10212) are obtained
with k(y1y0)2/h as large as 130 withN58.

As discussed in the Introduction, it is expected that th
new representations for the canyon/waveguide Green’s fu
tion and the related periodic Green’s function will prove us
ful in boundary element modeling of sound propagation
city streets and in waveguides, and for problems of scatte
by periodic structures. For all these boundary element ap
cations very efficient calculation procedures for the Gree
function are crucial.
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