1,294 research outputs found

    Bell's Theorem and Nonlinear Systems

    Full text link
    For all Einstein-Podolsky-Rosen-type experiments on deterministic systems the Bell inequality holds, unless non-local interactions exist between certain parts of the setup. Here we show that in nonlinear systems the Bell inequality can be violated by non-local effects that are arbitrarily weak. Then we show that the quantum result of the existing Einstein-Podolsky-Rosen-type experiments can be reproduced within deterministic models that include arbitrarily weak non-local effects.Comment: Accepted for publication in Europhysics Letters. 14 pages, no figures. In the Appendix (not included in the EPL version) the author says what he really thinks about the subjec

    Strict detector-efficiency bounds for n-site Clauser-Horne inequalities

    Get PDF
    An analysis of detector-efficiency in many-site Clauser-Horne inequalities is presented, for the case of perfect visibility. It is shown that there is a violation of the presented n-site Clauser-Horne inequalities if and only if the efficiency is greater than n/(2n-1). Thus, for a two-site two-setting experiment there are no quantum-mechanical predictions that violate local realism unless the efficiency is greater than 2/3. Secondly, there are n-site experiments for which the quantum-mechanical predictions violate local realism whenever the efficiency exceeds 1/2.Comment: revtex, 5 pages, 1 figure (typesetting changes only

    Quantum interference with molecules: The role of internal states

    Full text link
    Recent experiments have shown that fullerene and fluorofullerene molecules can produce interference patterns. These molecules have both rotational and vibrational degrees of freedom. This leads one to ask whether these internal motions can play a role in degrading the interference pattern. We study this by means of a simple model. Our molecule consists of two masses a fixed distance apart. It scatters from a potential with two or several peaks, thereby mimicking two or several slit interference. We find that in some parameter regimes the entanglement between the internal states and the translational degrees of freedom produced by the potential can decrease the visibility of the interference pattern. In particular, different internal states correspond to different outgoing wave vectors, so that if several internal states are excited, the total interference pattern will be the sum of a number of patterns, each with a different periodicity. The overall pattern is consequently smeared out. In the case of two different peaks, the scattering from the different peaks will excite different internal states so that the path the molecule takes become entangled with its internal state. This will also lead to degradation of the interference pattern. How these mechanisms might lead to the emergence of classical behavior is discussed.Comment: 12 pages, 4 eps figures, quality of figures reduced because of size restriction

    Qubits from Number States and Bell Inequalities for Number Measurements

    Full text link
    Bell inequalities for number measurements are derived via the observation that the bits of the number indexing a number state are proper qubits. Violations of these inequalities are obtained from the output state of the nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation, v3: published versio

    Atom interferometer as a selective sensor of rotation or gravity

    Full text link
    In the presence of Earth gravity and gravity-gradient forces, centrifugal and Coriolis forces caused by the Earth rotation, the phase of the time-domain atom interferometers is calculated with accuracy up to the terms proportional to the fourth degree of the time separation between pulses. We considered double-loop atom interferometers and found appropriate condition to eliminate their sensitivity to acceleration to get atomic gyroscope, or to eliminate the sensitivity to rotation to increase accuracy of the atomic gravimeter. Consequent use of these interferometers allows one to measure all components of the acceleration and rotation frequency projection on the plane perpendicular to gravity acceleration. Atom interference on the Raman transition driving by noncounterpropagating optical fields is proposed to exclude stimulated echo processes which can affect the accuracy of the atomic gyroscopes. Using noncounterpropagating optical fields allows one to get a new type of the Ramsey fringes arising in the unidirectional Raman pulses and therefore centered at the two-quantum line center. Density matrix in the Wigner representation is used to perform calculations. It is shown that in the time between pulses, in the noninertial frame, for atoms with fully quantized spatial degrees of freedom, this density matrix obeys classical Liouville equations.Comment: 21 pages, 4 figures, extended references, discussion, and motivatio

    Violation of Bell's Inequalities with a Local Theory of Photons

    Get PDF
    We use a local theory of photons purely as particles to model the single-photon experiment proposed by Tan, Walls, and Collett. Like Tan et al. we are able to derive a violation of Bell's inequalities for photon counts coincidence measurements. Our local probabilistic theory does not use any specific quantum mechanical calculations.Comment: LaTeX, 11 pages, one figure (in LaTeX), submitted to Foundations of Physics Letter

    Multi-Prover Commitments Against Non-Signaling Attacks

    Get PDF
    We reconsider the concept of multi-prover commitments, as introduced in the late eighties in the seminal work by Ben-Or et al. As was recently shown by Cr\'{e}peau et al., the security of known two-prover commitment schemes not only relies on the explicit assumption that the provers cannot communicate, but also depends on their information processing capabilities. For instance, there exist schemes that are secure against classical provers but insecure if the provers have quantum information processing capabilities, and there are schemes that resist such quantum attacks but become insecure when considering general so-called non-signaling provers, which are restricted solely by the requirement that no communication takes place. This poses the natural question whether there exists a two-prover commitment scheme that is secure under the sole assumption that no communication takes place; no such scheme is known. In this work, we give strong evidence for a negative answer: we show that any single-round two-prover commitment scheme can be broken by a non-signaling attack. Our negative result is as bad as it can get: for any candidate scheme that is (almost) perfectly hiding, there exists a strategy that allows the dishonest provers to open a commitment to an arbitrary bit (almost) as successfully as the honest provers can open an honestly prepared commitment, i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the case of multi-round schemes, our impossibility result is restricted to perfectly hiding schemes. On the positive side, we show that the impossibility result can be circumvented by considering three provers instead: there exists a three-prover commitment scheme that is secure against arbitrary non-signaling attacks

    New optimal tests of quantum nonlocality

    Full text link
    We explore correlation polytopes to derive a set of all Boole-Bell type conditions of possible classical experience which are both maximal and complete. These are compared with the respective quantum expressions for the Greenberger-Horne-Zeilinger (GHZ) case and for two particles with spin state measurements along three directions.Comment: 10 page

    Correlations of observables in chaotic states of macroscopic quantum systems

    Full text link
    We study correlations of observables in energy eigenstates of chaotic systems of a large size NN. We show that the bipartite entanglement of two subsystems is quite strong, whereas macroscopic entanglement of the total system is absent. It is also found that correlations, either quantum or classical, among less than N/2N/2 points are quite small. These results imply that chaotic states are stable. Invariance of these properties under local operations is also shown.Comment: 5 pages, 2 figure
    corecore