53 research outputs found

    Non‐coding RNAs in bone remodelling and bone metastasis : mechanisms of action and translational relevance

    Get PDF
    Bone metastases are frequent complications in patients with advanced cancer, which can be fatal or may rapidly impede the quality of life of patients. Current treatments for patients with bone metastases are palliative. Therefore, a better understanding of the molecular mechanisms that precede the overt development of skeletal lesions could lead to better therapeutic interventions. In this review, we present evidence that non‐coding RNAs (ncRNAs) such as long non‐coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are emerging as master regulators of bone metastasis formation. We highlight potential opportunities for the therapeutic targeting of ncRNAs. Furthermore, we discuss the possibility that ncRNAs may be used as biomarkers in the context of bone metastases, which might provide insight for improving the response to current bone‐targeting therapies

    Bone-targeted therapies in cancer-induced bone disease

    Get PDF
    Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies

    The CaSR in pathogenesis of breast cancer : a new target for early stage bone metastases

    Get PDF
    The Ca2+-sensing receptor (CaSR) is a class-C G protein-coupled receptor which plays a pivotal role in calciotropic processes, primarily in regulating parathyroid hormone secretion to maintain systemic calcium homeostasis. Among its non-calciotropic roles, where the CaSR sits at the intersection of myriad processes, it has steadily garnered attention as an oncogene or tumor suppressor in different organs. In maternal breast tissues the CaSR promotes lactation but in breast cancer it acts as an oncoprotein and has been shown to drive the pathogenesis of skeletal metastases from breast cancer. Even though research has made great strides in treating primary breast cancer, there is an unmet need when it comes to treatment of metastatic breast cancer. This review focuses on how the CaSR leads to the pathogenesis of breast cancer by contrasting its role in healthy tissues and tumorigenesis, and by drawing brief parallels with the tissues where it has been implicated as an oncogene. A class of compounds called calcilytics, which are CaSR antagonists, have also been surveyed in the instances where they have been used to target the receptor in cancerous tissues and constitute a proof of principle for repurposing them. Current clinical therapies for treating bone metastases from breast cancer are limited to targeting osteoclasts and a deeper understanding of the CaSR signaling nexus in this context can bolster them or lead to novel therapeutic interventions

    MicroRNAs and their roles in breast cancer bone metastasis

    Get PDF
    Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients

    Bone metastases in the era of targeted treatments : insights from molecular biology

    Get PDF
    Bone metastases remain a common feature of advanced cancers and are associated with significant morbidity and mortality. Recent research has identified promising novel treatment targets to improve current treatment strategies for bone metastatic disease. This review summarizes the well-known and recently discovered molecular biology pathways in bone that govern normal physiological remodeling or drive the pathophysiological changes observed when bone metastases are present. In the rapidly changing world of targeted cancer treatments, it is important to recognize the specific treatment effects induced in bone by these agents and the potential impact on common imaging strategies. The osteoclastic targets (bisphosphonates, LGR4, RANKL, mTOR, MET-VEGFR, cathepsin K, Src, Dock 5) and the osteoblastic targets (Wnt and endothelin) are discussed, and the emerging field of osteo-immunity is introduced as potential future therapeutic target. Finally, a summary is provided of available trial data for agents that target these pathways and that have been assessed in patients. The ultimate goal of research into novel pathways and targets involved in the tumor-bone microenvironment is to tackle one of the great remaining unmet needs in oncology, that is finding a cure for bone metastatic disease

    The RANK–RANKL axis : an opportunity for drug repurposing in cancer?

    Get PDF
    Drug repurposing offers advantages over traditional drug development in terms of cost, speed and improved patient outcomes. The receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) inhibitor denosumab is approved for the prevention of skeletal-related events in patients with advanced malignancies involving bone, including solid tumours and multiple myeloma. Following improved understanding of the role of RANK/RANKL in cancer biology, denosumab has already been repurposed as a treatment for giant cell tumour of bone. Here, we review the role of RANK/RANKL in tumourigenesis, including effects on tumour initiation, progression and metastasis and consider the impact of RANK/RANKL on tumour immunology and immune evasion. Finally, we look briefly at ongoing trials and future opportunities for therapeutic synergy when combining denosumab with anti-cancer agents such as immune checkpoint inhibitors

    MiRNAs and snoRNAs in bone metastasis: functional roles and clinical potential

    Get PDF
    Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow—taking advantage over bone resident cells—and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients

    The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer

    Get PDF
    Lysophosphatidic acid (LPA) is a bioactive lipid promoting cancer metastasis. LPA activates a series of six G protein-coupled receptors (LPA1-6). While blockage of LPA1 in vivo inhibits breast carcinoma metastasis, down-stream genes mediating LPA-induced metastasis have not been yet identified. Herein we showed by analyzing publicly available expression data from 1488 human primary breast tumors that the gene encoding the transcription factor ZEB1 was the most correlated with LPAR1 encoding LPA1. This correlation was most prominent in basal primary breast carcinomas and restricted to cell lines of basal subtypes. Functional experiments in three different basal cell lines revealed that LPA-induced ZEB1 expression was regulated by the LPA1/Phosphatidylinositol-3-Kinase (Pi3K) axis. DNA microarray and real-time PCR analyses further demonstrated that LPA up-regulated the oncomiR miR-21 through an LPA1/Pi3K/ZEB1-dependent mechanism. Strikingly, treatment with a mirVana miR-21 inhibitor, or silencing LPA1 or ZEB1 completely blocked LPA-induced cell migration in vitro, invasion and tumor cell bone colonization in vivo, which can be restored with a mirVana miR-21 mimic. Finally, high LPAR1 expression in basal breast tumors predicted worse lung-metastasis-free survival. Collectively, our results elucidate a new molecular pathway driving LPA-induced metastasis, thus underscoring the therapeutic potential of targeting LPA1 in patients with basal breast carcinomas

    Therapeutic targets for bone metastases in breast cancer

    Get PDF
    Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer

    Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis

    Get PDF
    Metastasis is the main cause of death for cancer patients. Targeting factors that control metastasis formation is a major challenge for clinicians. Lysophosphatidic acid (LPA) is a bioactive phospholipid involved in cancer. LPA activates at least six independent G protein-coupled receptors (LPA1-6). Tumor cells frequently co-express multiple LPA receptors, puzzling the contribution of each one to cancer progression. All three receptors, LPA1, LPA2 and LPA3, act as oncogenes and prometastatic factors in the mouse mammary gland. The competitive inhibitor of LPA1 and LPA3 receptors, Ki16425, inhibits efficiently breast cancer bone metastases in animal models. We showed here that Debio 0719, which corresponds to the R-stereoisomer of Ki16425 exhibited highest antagonist activities at LPA1 (IC50=60 nM) and LPA3 (IC50=660 nM) than Ki16425 [IC50=130 nM (LPA1); IC50=2.3 µM (LPA3)]. In vitro, Debio 0719, inhibited LPA-dependent invasion of the 4T1 mouse mammary cancer cells. In vivo, early but not late administration of Debio 0719 (50 mg/kg p.o. twice daily) to BALB/c mice during the course of orthotopic 4T1 primary tumor growth reduced the number of spontaneously disseminated tumor cells to bone and lungs without affecting the growth of primary tumors and tumor-induced angiogenesis. We found that increased LPA1 mRNA expression in primary tumors of breast cancer patients correlated significantly with their positive lymph node status (p<0.001). Altogether, our results suggest that LPA1 controls early events of metastasis independently of cell proliferation and angiogenesis. Therefore, targeting this receptor with Debio 0719 has a high therapeutic potential against metastasis formation for breast cancer patients
    corecore