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Abstract 

Bone metastases are frequent complications in patients with advanced cancer, which can 

be fatal or may rapidly impede the quality of life of patients. Current treatments for patients 

with bone metastases are palliative. Therefore, a better understanding of the molecular 

mechanisms that precede the overt development of skeletal lesions could lead to better 

therapeutic interventions. In this review, we present evidence that non-coding RNAs 

(ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular 

RNAs (circRNAs) are emerging as master regulators of bone metastasis formation. We 

highlight potential opportunities for the therapeutic targeting of ncRNAs. Furthermore, we 

discuss the possibility that ncRNAs may be used as biomarkers in the context of bone 

metastases, which might provide insight for improving the response to current bone-targeting 

therapies. 

 

Keywords 

Non-coding RNA, lncRNA, miRNA, circRNA, bone physiology, bone metastasis, 
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Bullet point summary 

What is already known: 
 

- Most studies investigating bone metastasis have focused on the identification and 
characterization of proteins; 

- The role of non-coding RNAs in bone metastasis is only to be unrevealed. 
 
What this study adds:  
 

- This study is a comprehensive review of non-coding RNA functions in bone 
metastasis. 

 
Clinical significance:  
 

-  Non-coding RNAs emerge as potential therapeutic targets or biomarkers to predict 
risk of bone metastasis. 



 

 
This article is protected by copyright. All rights reserved. 

Introduction 

Metastasis is a multi-step process by which cancer cells disseminate from primary tumour 

sites to distant organs (Chaffer et al., 2016). Each type of cancer can metastasize to bone, 

although some cancer types, such as breast and prostate cancers, are more prone to 

disseminate to the skeleton (Suva et al., 2011). In bones, metastatic cancer cells tend to 

colonize vascularized areas, within the red marrow of long bones, sternum, pelvis, ribs and 

vertebrae (Suva et al., 2011). During bone metastasis formation, cancer cells (i) interfere with 

normal bone remodelling, (ii ) compromise haematopoiesis, and (iii ) alter the activity of the 

immune system, which leads to tumour cell outgrowth and bone degradation (Schmid-Alliana 

et al., 2018). For these reasons, patients with bone metastases often show severe 

complications, such as bone pain, pathological fractures, and spinal cord compression, which 

substantially increase the morbidity and the mortality (Suva et al., 2011). 

Approved treatments for bone metastases include bisphosphonates (BPs), an anti-RANKL 

antibody, and radio-nucleotides, in addition to systemic therapies (Van Poznak et al., 2017). 

Although bone-targeting agents and systemic therapies increase the overall quality of life of 

patients with bone metastases, they are only palliative (Van Poznak et al., 2017). Thus, novel 

approaches to treat patients with bone metastases are needed in the clinics. In order to 

develop improved therapeutic interventions, it is important to better understand the molecular 

mechanisms underlying the cellular events preceding the development of overt skeletal 

lesions. 

The majority of studies investigating the mechanisms of bone metastases have focused on 

the identification and characterization of coding proteins. However, non-coding RNAs 

(ncRNAs) are emerging as playing a key role in mediating bone metastasis formation (Croset 

et al., 2015; Hesse & Taipaleenmaki, 2019). 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5066
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Here we present important aspects of the biogenesis of ncRNAs, and summarise the 

current knowledge on the role of ncRNAs in bone physiology and bone metastasis formation, 

highlighting the potential translational impact of ncRNAs as therapeutic targets. Finally, we 

discuss the possibility of using ncRNAs as potential biomarkers to predict the risk of bone 

metastases in cancer patients. 

Properties of ncRNAs 

As suggested by the name, non-coding RNAs (ncRNAs) are a large class of transcripts 

with no apparent protein-coding potential, but characterized by a functional capacity (Figure 

1). In general, ncRNAs are classified according to their length as (i) long non-coding RNAs 

(lncRNAs) (>200 nucleotides), which include long intervening non-coding RNAs 

(lincRNAs) and long ribosomal RNAs (rRNAs), 18S and 28S, and (ii) small non-coding 

RNAs (sncRNAs) (<200 nucleotides), which comprises microRNAs (miRNAs), P-element 

induced wimpy testis (PIWI)-interacting RNAs (piRNAs), short-interfering RNAs (siRNAs), 

transfer RNAs (tRNAs), 5.8S rRNAs, small nucleolar RNAs (snoRNAs), and small nuclear 

RNAs (snRNAs) (Bhartiya & Scaria, 2016). Recently, circular RNAs (circRNAs) have been 

identified as an another class of functional and abundant ncRNAs (Bhartiya & Scaria, 2016). 

NcRNAs are evolutionary highly conserved and involved in major biological events 

during embryogenesis, organogenesis, and cell differentiation. In addition, ncRNAs are often 

implicated in deregulated molecular processes in the context of diseases, including cancer 

and metastasis (Flynn & Chang, 2014; Hesse & Taipaleenmaki, 2019). Furthermore, ncRNAs 

(e.g., lncRNAs, miRNAs, and circRNAs) can be secreted by cells, being encapsulated within 

extracellular vesicles (e.g., microvesicles and exosomes) or in association with high-density 

lipoproteins or with argonaute (AGO) proteins (Salido-Guadarrama et al., 2014). These 

ncRNA-containing vesicles or ncRNA-(lipo-)protein complexes can be taken up by recipient 

cells in which these molecules may exert regulatory functions (Anfossi et al., 2018; Li  et al., 
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2018b). Secreted ncRNAs can therefore contribute to cell-cell communication and regulate 

gene expression in recipient cells (Anfossi et al., 2018). 

Apart of a small number of lncRNAs such as XIST, HOTAIR, and TERC, the exact 

function of the vast majority of lncRNAs is unknown (Quinn & Chang, 2016). However, the 

aberrant expression of lncRNAs appears to play a critical role in tumorigenesis, and 1614 

cancer-associated lncRNAs have been reported so far (Lnc2cancer database, http://www.bio-

bigdata.com/lnc2cancer/statistics.html). The deregulated expression of lncRNAs may 

potentially contribute to each of the hallmarks of cancer cells (sustained proliferative 

signalling, evasion from growth suppressors, replicative immortality, invasion and metastasis, 

induction of angiogenesis, and resistance to cell death) (Quinn & Chang, 2016). This 

indicates the putative biological importance of these molecules in various cellular processes 

(Quinn & Chang, 2016). LncRNAs can functionally organize different nuclear sub-

compartments, and regulate the chromatin structure accordingly (Akhade et al., 2017). 

LncRNAs also function as miRNA sponges, thereby acting as competing endogenous RNAs 

(ceRNAs) in order to regulate gene expression at the post-transcriptional level (Akhade et al., 

2017). Furthermore, lncRNAs can trans-activate Staufen1 (STAU1)-mediated mRNA decay 

(SMD), and serve as a natural antisense transcript for mRNAs and other ncRNAs (Akhade et 

al., 2017). In addition, lncRNAs can bind to proteins to modulate their functions (Akhade et 

al., 2017; Pospiech et al., 2018). A further layer of complexity has been provided by recent 

evidence that some lncRNAs include short open reading frames (ORFs). Thus, these 

lncRNAs could potentially be translated into peptides and proteins, indicating the current 

classification of some lncRNAs has some limitations (Niazi & Valadkhan, 2012). 

Consistently, some annotated lncRNAs have been found to be associated with ribosomes, and 

to encode for short functional peptides (Anderson et al., 2015; Choi et al., 2018; Huang et al., 

2017; Matsumoto et al., 2017; Rossi et al., 2019). However, this ability for some lncRNAs to 

http://www.bio-bigdata.com/lnc2cancer/statistics.html
http://www.bio-bigdata.com/lnc2cancer/statistics.html
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be translated into proteins does not preclude their non-coding functions. Moreover, it has 

been reported that some lncRNAs and their related peptides can cooperate in the same 

cellular processes (Yu et al., 2017; Rossi et al., 2019). 

 

MiRNAs regulate many cellular events through different molecular mechanisms (Figure 

1). For instance, miRNAs exert key roles in the post-transcriptional regulation of gene 

expression by interacting with specific mRNA targets, thereby inhibiting translation and 

favouring mRNA degradation (Krol et al., 2010). Importantly, one miRNA can modulate the 

abundance of hundreds of mRNA targets, whereas a single mRNA can be targeted by several 

miRNAs (Krol et al., 2010). Biologically active miRNAs are the final product of a tightly 

regulated maturation process. Once a primary miRNA (pri-miRNA) is transcribed by RNA 

polymerase II, the Drosha-DGCR8 complex processes it as a precursor miRNA (pre-miRNA) 

(Han et al., 2004). The pre-miRNA is then exported from the nucleus to the cytoplasm where 

it is cleaved by Dicer, generating a small RNA duplex composed by two RNA strands that 

are historically referred to ‘guide’ and ‘passenger’ strands (Ha & Kim, 2014). The RNA 

duplex is loaded onto an AGO protein (Salido-Guadarrama et al., 2014) to form an effector 

complex called RNA-induced silencing Complex (RISC). RISC only retains the guide strand 

(or mature miRNA) and it is processed into a mature RISC (Nakanishi, 2016). RISC 

recognises its target(s), usually at the γ’ untranslated region (UTR) of mRNAs, based on the 

base-pairing complementary to miRNA sequence as well as the accessibility of the target site 

(Jo et al., 2015). Once bound to its target, RISC inhibits protein synthesis either by repressing 

the translation or by promoting mRNA deadenylation and degradation (Jo et al., 2015). In 

addition to exerting a repressive function, miRNAs can also increase gene expression in 

certain cell types and under specific conditions using different mechanisms (Valinezhad 

Orang et al., 2014). For example, miRNAs can interact with micro-ribonucleoproteins 
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(miRNPs). These are effector complexes, that can act in trans, thereby promoting the 

expression of mRNAs (Valinezhad Orang et al., 2014). Furthermore, miRNAs can interact 

with AU-rich elements (ARE) of mRNAs and thus prevent the ARE-mediated mRNA decay 

(AMD) (Jing et al., 2005). Changes in miRNA expression or defects in the biogenesis 

machinery are associated with numerous pathologies, including cancers (Croset et al., 2015; 

Hesse & Taipaleenmaki, 2019). In particular, deregulated miRNAs can act either as 

oncogenes or as tumour suppressor genes depending on their target mRNAs (Croset et al., 

2015; Hesse & Taipaleenmaki, 2019). 

 

In addition to lncRNAs and miRNAs, circRNAs also act as regulators of gene expression 

(Figure 1). The first circRNA was identified 40 years ago (Hsu & Coca-Prados, 1979). Since 

then, RNA-sequencing has shown that thousands of circRNAs are generated from protein-

coding genes across various eukaryotes (Wilusz, 2018). CircRNAs are generated through a 

non-canonical splicing mechanism, called back splicing, by which the pre-mRNA splicing 

machinery covalently links a downstream γ’ splice donor to an upstream 5’ splice acceptor 

(which usually belongs to an exon), leading to the formation of a circRNA and a linear RNA 

(Quan & Li, 2018). CircRNA biogenesis is influenced by transcriptional elongation speed, 

and it is promoted by some RNA-binding proteins as well as by the presence of inverted 

repeats in exon extremities or inverted ALU repeat elements in exons (Conn et al., 2015; 

Quan & Li, 2018). For example, the RNA-binding protein Quaking (QKI) positively 

regulates circRNA biogenesis during epithelial-to-mesenchymal transition (EMT) (Conn et 

al., 2015), which is an important process during tumour progression. In general, high 

circRNA expression levels correlate with low cell proliferation rate and high cell 

differentiation state (Patop & Kadener, 2018). In tumour cells, the expression of circRNAs is 

usually reduced, compared to normal cells (Bachmayr-Heyda et al., 2015). In addition to 
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these general findings, it has been discovered that the expression of specific circRNAs is 

associated with the expression of oncogenes and/or tumour suppressor genes, suggesting a 

role in tumour progression (Zhou et al., 2018a). Furthermore, additional mechanisms of 

action have been proposed, including (i) the regulation of parental gene expression at a 

transcriptional or post-transcriptional level, (ii ) the function as miRNA sponges (or ceRNAs), 

(iii ) the complex formation with other proteins, and (iv) the translation into proteins/peptides 

(Zhou et al., 2018a). 

 

Functions of ncRNAs in bone physiology 

Bone remodelling is a dynamic process that is based on the balanced activities of the bone-

forming osteoblasts (OBs) and the bone-resorbing osteoclasts (OCs). The coordinated cellular 

activities of OBs and OCs are important to ensure bone integrity, repair, and calcium 

homeostasis (Suva et al., 2011). Any imbalance between OB and OC activities can lead to 

bone diseases, such as osteoporosis and cancer-associated bone destruction (Suva et al., 

2011). 

OBs differentiate from bone marrow-derived mesenchymal stem cells (MSCs) in a tightly 

regulated manner (Almeida et al., 2017). Transforming growth factor-く (TGF-く), bone 

morphogenetic proteins (BMPs), and Wingless-INT (Wnt) proteins are local factors involved 

in OB differentiation (Long, 2011). Mature OBs secrete proteins, such as alkaline 

phosphatase and type I collagen, which are necessary for the formation of the bone 

extracellular matrix (also known as osteoid), which then becomes mineralized. Afterwards, 

while most of the OBs die by apoptosis, some reach quiescence as bone lining cells on bone 

surfaces or become embedded in the bone matrix as osteocytes (Dallas et al., 2013). 

Osteocytes control calcium and phosphate homeostasis, and serve as mechano-sensors to 

respond to mechanical loading of the skeleton (Dallas et al., 2013). 
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OCs are bone-specific multinucleated cells, which derive from the monocyte/macrophage 

lineage (Long, 2011). Like OBs, OC differentiation and function are regulated by various 

signals. For instance, the receptor activator of nuclear factor kappa-B ligand (RANKL) and 

the macrophage-colony stimulating factor (M-CSF) are two of the most important molecules 

that stimulate OC differentiation and activity (Long, 2011). OCs can also be activated by 

cytokines, such as interleukin-17 (IL-17), interferon-け (IFN-け), and tumour necrosis factor-g 

(TNF-g) (Long, 2011). OCs remove bone mineral and degrade the collagenous matrix by 

secreting protons and the proteolytic enzyme cathepsin K, respectively (Long, 2011). As 

bone is resorbed, growth factors embedded within the bone matrix, such as TGF-く and 

insulin-like growth factor-1 (IGF-1), are released and stimulate OB function and 

differentiation (Long, 2011). At the end of their life cycle, OCs undergo apoptosis (Long, 

2011). In this respect, ncRNAs regulate OB and OC function, thereby participating in the 

maintenance of bone integrity, as described below and summarized in Table 1. 

 

Role of lncRNAs in bone physiology 

Several nuclear and cytoplasmic lncRNAs have been reported to be differentially 

expressed during osteogenesis (Tye et al., 2018). The first well-characterized lncRNA acting 

in osteogenesis was Msh Homeobox 1 (Msx1) anti-sense RNA (Msx1-AS RNA) (Blin-

Wakkach et al., 2001). Msx1-AS RNA antagonizes the expression of the Msx1 

homeodomain protein, which down-regulates the master gene of skeletal differentiation, 

Runt-related transcription factor 2 (Runx2) (Blin-Wakkach et al., 2001). Thus, the ratio 

between Msx1 sense and anti-sense RNAs is a very important determinant for the control of 

skeletal differentiation (Blin-Wakkach et al., 2001). 

HOTAIR is another lncRNA involved in skeletal development (Rinn et al., 2007). It acts 

as a trans-regulator of HoxD gene expression by recruiting the polycomb repressive complex 
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2 (PRC2) to the HOXD locus (Rinn et al., 2007). In contrast, a recent work suggests that 

HOTAIR activity in trans is not essential for mouse skeletal development, although 

significant changes in the expression of the neighbouring genes Hoxc11 and Hoxc12 are 

detected as a result of HOTAIR deletion in mutant mice, suggesting that HOTAIR can act in 

cis on the genomic locus (Amandio et al., 2016). Furthermore, HOTAIR regulates the 

expression of other lncRNAs by targeting their loci, such as the Dlk1-Meg3 locus, the Igf2-

H19 locus and the Hottip gene in the Hoxa locus, all of them being involved in bone 

development (Huynh et al., 2017). 

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA that has 

been originally described in non-small cell lung cancer (NSCLC) (Ji et al., 2003). However, 

MALAT1 expression is also increased during osteogenic differentiation of adipose-derived 

mesenchymal stem cells (ADSCs), while miR-30 expression is decreased (Yi  et al., 2019). 

Silencing of MALAT1 or overexpression of miR-30 in ADSCs suppressed the RUNX2-

mediated OB differentiation. Overall, the authors showed that MALAT1 sponges miR-30 

promote the RUNX2-mediated OB differentiation of ADSCs (Yi  et al., 2019). 

 Maternally expressed gene 3 (MEG3) directly interacts with the transcription factor 

SOX2, and causes its dissociation from the BMP4 promoter, thereby triggering BMP4 

transcription and subsequent differentiation of MSCs into OBs (Zhuang et al., 2015). 

Interestingly, MSCs from patients with multiple myeloma have frequently low expression of 

MEG3 in comparison to those obtained from normal donors, suggesting that its down-

regulation might explain, at least in part, the lytic nature of skeletal lesions in multiple 

myeloma (Zhuang et al., 2015). 

H19 is involved in developmental biology, and operates through different mechanisms, 

which are not mutually exclusive (Gabory et al., 2010; Raveh et al., 2015). For example, 

H19, in concert with miR-675, promotes MSCs differentiation into OBs through inhibition of 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4883
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the TGF-く1/Smad3/HDAC signalling pathway (Huang et al., 2015). H19 acts also as a 

mediator of BMP9-induced osteogenic differentiation of MSCs by modulating Notch 

signalling-targeting miRNAs (including miR-449b, miR-107, miR-27b, miR-34a, miR-106b, 

miR-449a, miR-125a, and miR-17) (Liao et al., 2017). Conversely, H19 can act as a ceRNA 

functioning as a miRNA sponge. For example, H19 activates the Wnt signalling pathway and 

promotes OB differentiation by binding and thus sequestering miR-141 and miR-22, both of 

which are negative regulators of osteogenesis (Liang et al., 2016). Similarly, H19 is a 

positive regulator of mechanical tension-induced osteogenesis of human bone marrow MSCs 

by acting as a ceRNA for miR-138, which otherwise inhibits MSC differentiation (Wu et al., 

2018). Interestingly, H19 also acts as ceRNA for let-7 in primary breast carcinoma (Peng et 

al., 2017), and let-7 is involved in regulating bone formation (Wei et al., 2014). Although it is 

not proven yet, it is possible that H19 regulates let-7 function during osteogenesis. 

Anti-differentiation ncRNA (ANCR), called also differentiation-antagonizing non-protein 

coding RNA (DANCR), is required to maintain cells in an undifferentiated state. Its 

expression is decreased during OB differentiation (Zhu & Xu, 2013). Conversely, its 

overexpression negatively regulates OB differentiation by inhibiting RUNX2 expression 

(Zhu & Xu, 2013). Along the same line, ANCR negatively regulates osteogenic 

differentiation of periodontal ligament stem cells by directly targeting miR-758 (Peng et al., 

2018). 

RUNX2-AS1 is a lncRNA that has been described as being packed into exosomes secreted 

by myeloma cells (Li  et al., 2018a). These exosomes are transmitted into MSCs and repress 

OB differentiation of MSCs. More specifically, exosome-derived RUNX2-AS1 forms a 

duplex with RUNX2 pre-mRNA, thereby repressing RUNX2 expression and subsequent the 

osteogenic potential of MSCs (Li  et al., 2018a). 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5060
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=303
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=848
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4889
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=914
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=964
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Linc-ROR is upregulated in MSCs during osteogenesis, and its presence is essential for 

the correct differentiation of OBs (Feng et al., 2018). Mechanistically, it promotes the 

osteogenic differentiation of MSCs acting as a ceRNA of two miRNAs, miR-138 and miR-

145, known to be negative regulators of osteogenesis by targeting ZEB2 (Feng et al., 2018). 

 Owing to new bioinformatics techniques, such as next-generation sequencing (NGS) and 

high-throughput screenings, the list of lncRNAs involved in osteogenesis is expanding very 

rapidly. An example of a lncRNA identified using these methods is lncRNA-1, whose 

expression is down-regulated during myoblast differentiation, suggesting a potential role for 

lncRNA-1 in mesenchymal-to-osteogenic transition (Nardocci et al., 2018). Several other 

studies used similar bioinformatics strategies, uncovering a potential role for additional 

lncRNAs in bone physiology and pathology (Gu et al., 2017; Kim et al., 2018; Xie et al., 

2016; Zuo et al., 2013). 

 

Function of miRNAs in bone physiology 

 The first evidence for an important role of miRNAs in skeletal development was 

obtained by an in vivo study that investigated the deletion of the miRNA processing 

endonuclease Dicer in chondrocytes (Kobayashi et al., 2008). As a result of this deletion, 

animals had severe skeletal growth defects due to decreased chondrocyte proliferation and 

accelerated differentiation in post-mitotic hypertrophic chondrocytes (Kobayashi et al., 

2008). Dicer deletion in osteoprogenitor cells expressing Osterix also results in severe growth 

retardation in animals (Raaijmakers et al., 2010). In contrast, conditional deletion of Dicer in 

mature, osteocalcin-expressing OBs only caused a delay of bone mineralization in mice, 

which resumed by one month (Gaur et al., 2010). However, a second phenotype of 

significantly increased bone formation started to develop by two months of age and continued 

to increase for up to eight months of age, leading to a 2-fold increase in bone mass compared 
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to control mice (Gaur et al., 2010; Kobayashi et al., 2008; Raaijmakers et al., 2010). Overall, 

these findings indicate that specific miRNAs must be up- or down-regulated in a timely 

manner during skeletal development and physiology. 

Since the role of miRNAs in bone has already been described in several reviews 

(Bellavia et al., 2019; Ell & Kang, 2014; Haider & Taipaleenmaki, 2018; Ji et al., 2016), we 

focus on most recent findings regarding the characterization of miRNA functions. Several 

miRNAs regulate OB differentiation (Zhang et al., 2011). For example, miR-29b promotes 

osteogenesis by directly down-regulating known inhibitors of OB differentiation (e.g., 

HDAC4, TGF-くγ, ACVR2A, CTNNBIP1, DUSP2), through binding to the 3'-UTR seed 

region of target mRNAs (Li  et al., 2009). Along the same line, miR-218 promotes OB 

differentiation by down-regulating Wnt signalling inhibitors (such as SOST-1, DKK-2, and 

SFRP2) during the process of osteogenesis (Hassan et al., 2012). Conversely, a panel of 

miRNAs (including miR-23a, miR-24-2, miR-27a, miR-30c, miR-34c, miR-133a, miR-135a, 

miR-137, miR-204, miR-205, miR-217, and miR-338) expressed in MSCs was found to 

negatively control the osteogenic activity of RUNX2 and to impede OB differentiation 

(Hassan et al., 2010; Zhang et al., 2011). For example, miR-23a, miR-24-2, and miR-27a 

target SATB2, blocking its synergistic action with the pro-osteogenic transcription factor 

RUNX2 (Hassan et al., 2010). All of these miRNAs are inversely expressed relative to 

RUNX2 expression during osteogenesis (Hassan et al., 2010; Zhang et al., 2011). Overall, 

these findings underline how complex the interactions can be between mRNA targets and 

miRNAs, and how they can be part of tightly regulated feed-forward mechanisms during 

osteogenesis. Other miRNAs of particular interest, which have very recently been shown to 

regulate OB differentiation, are let-7c (Zhou et al., 2018b), the miR-23a cluster (Godfrey et 

al., 2018), miR-139-3p (Wang et al., 2018b), miR-182-5p (Pan et al., 2018), miR-219a-5p 

(Aquino-Martinez et al., 2018), miR-221 (Zheng et al., 2018), miR-342-3p (Han et al., 2018), 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1791
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3704
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3701
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3692
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miR-451a (Karvande et al., 2018), and miR-874 (Lin et al., 2018). In addition, it has recently 

been reported that miR-21 and miR-218 play a physiologic role in osteocytes, which are 

differentiated OBs embedded in the bone matrix (Davis et al., 2017). The deletion of miR-21 

expression in osteocytes is sufficient to increase apoptosis ex vivo (Davis et al., 2017). 

Moreover, reduced levels of miR-21 in conjunction with increased miR-218 levels are 

associated with connexin 43(Cx43)-deficient osteocytes, thereby promoting apoptosis (Davis 

et al., 2017). 

There is ample evidence that miRNAs regulate OC differentiation and activity (Ell & 

Kang, 2014; Ji et al., 2016). For example, miR-17 mediates the suppression of an osteoclastic 

protein-tyrosine phosphatase, which in turn promotes the inhibitory effect of EphA4 on OC 

activity (Lau & Sheng, 2018). MiR-27a is significantly increased during the process of 

estrogen-mediated inhibition of OC differentiation (Guo et al., 2018b). Mechanistically, miR-

27a inhibits peroxisome proliferator-activated receptor gamma (PPARけ) and adenomatous 

polyposis coli (APC) expression in OCs through a miR-27a binding site within the 3'-UTR 

region of PPARけ and APC. MiR-30a negatively regulates OC differentiation by inhibiting the 

DC-STAMP-c-Fos-nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) signalling 

pathway (Yin et al., 2017). MiR-145 inhibits OC differentiation by decreasing Smad3 

expression (Yu et al., 2018). MiR-182 is a negative regulator of protein kinase double-

stranded RNA-dependent (PKR), a novel inhibitory factor of OC differentiation, which acts 

via regulation of the endogenous IFN-く-mediated autocrine feedback-loop (Inoue et al., 

2018). MiR-199a-5p expression levels are increased in OCs, compared to their precursors 

(Guo et al., 2018a). It promotes OC differentiation in vitro by directly targeting transcription 

factor Mafb (Guo et al., 2018a). Mafb was previously reported to negatively regulate OC 

differentiation, which suggests that there is a regulatory effect of miRʉ199aʉ5p on Mafb 

mRNA expression (Guo et al., 2018a). MiR-218, beside its pro-osteogenic role (Hassan et 
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al., 2012), negatively regulates OC differentiation by attenuating the expression of p38 

MAPK, c-Fos, and NFATc1 in OCs (Qu et al., 2015). Furthermore, miR-218 directly targets 

TNF receptor-1, a cell membrane receptor for TNF, leading to the repression of the 

TNF/nuclear factor-せB signalling pathway (Wang et al., 2018a). The expression levels of 

other miRNAs (including miR-33a-5p, miR-133a, miR-141-3p, miR-190, and miR-219-5p) 

were shown to be decreased after RANKL treatment of OC precursors (Ell et al., 2013). 

Conversely, miR-16, miR-211, miR-378, and let-7a were significantly up-regulated during 

OC differentiation (Ell et al., 2013). Additionally, miR-20a and miR-155 regulate autophagy 

in OCs (Sul et al., 2018; Sun et al., 2015). 

As described above, both precursors and mature bone cells express a multitude of 

miRNAs, which fine-tune OB and OC differentiation. However, exosomal miRNAs derived 

from bone cells could also participate in bone homeostasis by mediating the crosstalk 

between OCs and OBs (Li  et al., 2016; Xie et al., 2017). For example, OC-derived exosomal 

miR-214-3p is transferred to OBs to inhibit their activity in vitro and to reduce bone 

formation in vivo (Li  et al., 2016). Conversely, exosomal miR-503-3p from differentiated 

OBs inhibits RANKL-induced OC differentiation in vitro (Xie et al., 2017). 

 

Relevance of circRNAs in bone physiology 

CircRNAs are emerging as important factors that could regulate bone homeostasis. Using 

microarray analysis, several circRNAs were found to be differentially expressed in MSCs 

undergoing OB differentiation, compared to their undifferentiated counterparts (Zhang et al., 

2018b). Some of these circRNAs possess miRNA response elements enabling their 

interaction with specific miRNAs, which have osteogenic functions (Zhang et al., 2018b). 

For example, miR-199b-5p is linked to circIGSF11, and silencing of circIGSF11 promotes 

OB differentiation and increases miR-199b-5p expression (Zhang et al., 2018b). This study 
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suggests that circRNA-miRNA interaction actively contributes to the osteogenic 

differentiation of human MSCs. 

 Using high-throughput RNA-seq analysis, circRNA expression was measured during the 

osteogenic differentiation of MC3T3-E1 cells induced by BMP-2 (Qian et al., 2017). 

Expression of circRNA.5846, circRNA.19142, and circRNA.10042 was significantly 

increased in BMP2-treated MC3T3E1 cells. However, the signalling pathways controlled by 

these circRNAs in osteoblastic cells are still unknown (Qian et al., 2017). Similar analyses 

were conducted in OCs and their precursors following RANKL stimulation (Dou et al., 

2016). Over 20 circRNAs were found to be up- or down-regulated at different stages of OC 

differentiation (Dou et al., 2016). However, no functional analysis was conducted. To further 

investigate the functions of circRNAs in bone remodelling as well as in cancer, additional 

investigations are required. The strategy to use high-throughput RNA-seq analyses followed 

by functional studies (e.g., gene expression modulation of circRNAs in vitro and in vivo) 

could be useful to address this question. 

 

Dysregulation of ncRNAs in bone metastases 

Metastases are formed when cancer cells are released from the primary tumour site, travel 

through the blood or the lymphatic system, and finally form secondary tumours in distant 

organs. Bone is the most common metastatic site for primary breast, prostate, and lung 

tumours, where the bone marrow is a fertile soil for tumour cells to grow (Suva et al., 2011). 

Tumour cells residing in the bone marrow alter the functions of OCs and OBs (Suva et al., 

2011). For example, breast and lung cancer cells cause bone destruction by enhancing OC 

activity, whereas prostate cancer cells form mixed lesions with osteosclerotic components by 

increasing OB activity (Suva et al., 2011). Bones weakened due to skeletal metastases are 

prone to skeletal-related events, such as fractures, hypercalcaemia, cancer-induced bone pain 
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and spinal cord compression, which substantially increase the morbidity and mortality of 

patients with advanced cancer (Suva et al., 2011). 

 At the bone metastatic site, tumour cells induce a distortion of bone remodelling, and 

bone-derived growth factors released from resorbed bone promote tumour growth (Guise et 

al., 1996; Suva et al., 2011). This concept of “vicious cycle” was first proposed by Dr Greg 

Mundy (University of Texas Health Science Centre, San Antonio, USA). Although it is 

difficult to identify a starting point for the “vicious cycle”, it is well known that metastatic 

cancer cells are able to produce a number of factors, such as parathyroid hormone-related 

protein (PTHrP), interleukin (IL)-11, and prostaglandin E2 that mediate bone resorption by 

increasing the OB-dependent production of RANKL (Croucher et al., 2016; Dougall, 2012). 

In turn, RANKL binds to its receptor RANK on OC precursors, leading to the formation of 

new OCs, as well as promotes the activity of mature OCs, thus favouring OC-mediated bone 

resorption (Croucher et al., 2016). Under physiological conditions, osteoprotegerin (OPG) 

binds to RANKL and restricts its activity (Croucher et al., 2016). PTHrP regulates RANKL 

expression in OBs and stromal cells (Dougall, 2012). Moreover, tumour-derived PTHrP 

reduces the OB-dependent OPG production, thereby further promoting bone resorption. 

Tumour cells also secrete IL-8 that has a direct effect on OC differentiation and activation 

(Suva et al., 2011). Tumour cells not only stimulate OC activity, but also inhibit OB function, 

thereby worsening the imbalance between bone formation and bone resorption, which 

promotes bone destruction (Croucher et al., 2016). Different factors produced by tumour cells 

have been shown to suppress OB differentiation. These include endothelin-1, dickkopf-

related protein 1 (DKK-1), sclerostin-1 (SOST-1), activin A, and noggin (NOG) (Croucher et 

al., 2016). Moreover, bone tissue is an abundant reservoir for growth factors, including TGF-

く, IGF-1, BMPs, platelet-derived growth factor (PDGF), and epidermal growth factor (EGF), 

which are entrapped in the bone matrix and become released in the bone microenvironment 
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upon matrix degradation by active OCs (Croucher et al., 2016). In turn, these bone-derived 

growth factors promote tumour growth. 

A large body of evidence suggests that ncRNAs regulate the various molecular 

mechanisms of bone metastasis formation, although only a few studies investigated the role 

of lncRNAs and circRNAs in bone metastasis so far. By contrast, several articles already 

reviewed the role of miRNAs in bone metastasis (Baier & Wan, 2016; Browne et al., 2014; 

Cheung et al., 2017; Croset et al., 2015; Ell & Kang, 2014; Hesse & Taipaleenmaki, 2019). 

In cancer and metastasis, a loss of tumour-suppressive miRNAs and an increased expression 

of oncogenic miRNAs are part of the disease mechanism. MiRNA functions as well as those 

of other ncRNAs in bone metastasis are summarized in Table 2. Herein, we will focus on 

most recent and/or pivotal findings, and show that the dysregulation of ncRNAs in tumour 

cells or bone cells as well as the shuttling of ncRNAs between tumour and bone cells may 

lead to the establishment of a cancer niche. This environment is conducive for tumour cells to 

grow and induce the formation of skeletal lesions. 

 

OC- and OB-derived miRNAs and bone metastases 

The role of OC-derived miRNAs in the development of osteolytic bone metastasis has 

been examined in detail by the group of Dr Yibin Kang (Princeton University, NJ, USA), 

hypothesizing that miRNAs might be possible therapeutic targets during the differentiation of 

OC precursors into mature OCs. In this respect, miRNA microarray profiling of mature OCs 

was performed after exposure of OC precursors to conditioned medium from breast cancer 

cells (Ell et al., 2013). Four miRNAs (miR-133a, miR-141-3p, miR-190, and miR-219-5p) 

whose expression was consistently down-regulated were selected for further investigation 

(Ell et al., 2013). Systemic treatment of healthy mice with each of these miRNAs (whose aim 

is to replenish the lost miRNA expression during OC differentiation) inhibited bone 
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resorption in vivo. Consistently, treatment of tumour-bearing mice with miR-141 or miR-219 

significantly reduced the formation of osteolytic lesions caused by breast cancer cells (Ell et 

al., 2013). In contrast, systemic treatment of tumour-bearing animals with miR-133a or miR-

190 had no effect on the development of bone metastases, compared to control (Ell et al., 

2013). Nevertheless, these miRNAs were inhibiting OC differentiation in vitro through the 

functional targeting of essential OC genes, including Mitf, Traf6, Calcr, and Mmp14. The 

observation that miR-133a and miR-190 did not inhibit the formation of lytic bone 

metastases, whereas they did inhibit normal bone resorption, was of particular interest. Of 

note, the half-lives of miR-133a and miR-190 in the circulation were shorter than those of 

miR-141 and miR-219 (Ell et al., 2013). These differences in pharmacokinetics of miRNAs 

could therefore explain these unexpected results, suggesting that inhibition of osteolytic 

lesions may require greater miRNA levels to reach the bone than those required for the 

inhibition of normal bone resorption (Ell et al., 2013). 

MiR-34a is another miRNA that is down-regulated during OC differentiation. It inhibits 

OC differentiation by directly targeting the pro-osteoclastic factor TGIF2 (TGF--induced 

factor 2) (Krzeszinski et al., 2014). The pharmacological administration of a miR-34a mimic 

delivered in nanoparticles attenuates the formation of breast cancer bone metastases in mice 

(Krzeszinski et al., 2014). A phase I, open-label, dose-escalation study investigated the 

safety, pharmacokinetics, and pharmacodynamics of a miR-34a mimic (MRX34), 

encapsulated in lipid nanoparticles, in patients with advanced or metastatic cancer (Beg et al., 

2017). However, the clinical trial was terminated prematurely due to cases of immune-related 

serious adverse events. 

MiR-214-3p expression in OCs is significantly up-regulated in bone specimens from 

breast cancer patients with bone metastases (Liu et al., 2017). Additionally, the conditioned 

medium from MDA-MB-231 breast cancer cells stimulates miR-214 expression in mature 
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OCs during OC differentiation. Mechanistically, miR-214 directly targets the TNF receptor 

associated factor 3 (TRAF3), a negative regulator of OC differentiation, thereby promoting 

the formation of mature OCs. The treatment of animals with antagomiR-214-3p encapsulated 

within an OC-targeting delivery system (D-Asp8-liposome) attenuates the formation of 

osteolytic lesions caused by breast cancer cells (Liu et al., 2017). Additionally, OC-derived 

exosomal miR-214-3p was transferred to OBs, and inhibited OB activity in vitro and reduced 

bone formation in vivo (Li  et al., 2016). Of note, miR-214 is expressed by OBs and inhibits 

OB differentiation in vitro and bone formation in vivo, through repression of activating 

transcription factor 4 (Atf4), which is one of the main transcription factors required for OB 

function (Wang et al., 2013). Taken together, these findings suggest that the therapeutic 

inhibition of OC- or OB-derived miR-214-3p could be a strategy to impede, respectively, the 

development of lytic or sclerotic bone metastases (Haider & Taipaleenmaki, 2018; Li  et al., 

2016; Wang et al., 2013). 

 

Tumour-derived miRNAs and homing of tumour cells to the bone marrow 

Searching for regulators of tumour spreading, Tavazoie et al. (2008) identified a series of 

miRNAs (miR-126, miR-206, and miR-335) that were poorly expressed in lung- or bone-

tropic breast cancer cells. Overexpression of these miRNAs in breast cancer cells reduced 

lung and bone metastasis formation in animals (Tavazoie et al., 2008). MiR-126 suppressed 

metastases by inhibiting tumorigenesis in vivo and tumour cell proliferation in vitro. In 

contrast, miR-206 and miR-335 did not affect tumorigenesis, yet suppressed metastasis by 

inhibiting tumour cell migration and invasion in vitro. MiR-335 directly targets the γ’UTR of 

mRNAs for transcription factor SOX4 and tenascin C (TNC), both factors being involved in 

promoting tumour cell migration and invasion (Tavazoie et al., 2008). Elevated expression 

levels of let-7 in breast cancer cells were also reported to inhibit bone metastasis formation 
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by directly targeting HMGA2, a chromatin remodelling protein that activates pro-invasive 

genes (Ell & Kang, 2014). Conversely, miR-10b activated by transcription factor Twist 

facilitates lung and bone metastasis formation in animals by promoting MDA-MB-231 breast 

cancer cell invasion through direct targeting of the mRNA encoding homeobox D10 

(HOXD10), resulting in an increased expression of the pro-metastatic gene Ras homolog 

gene family member C (Rhoc) (Croset et al., 2015; Ell & Kang, 2014; Ma et al., 2007). 

Similarly, miR-17 promotes breast cancer cell migration/invasion in vitro and bone 

metastases in vivo through repression of the type II TGF- receptor (TR2) (Croset et al., 

2015). Along the same line, miR-21 promotes the colonization of breast cancer cells in bone 

by inhibiting the expression of the anti-metastatic genes PTEN, PDCD4, and SPRY2, which 

in turn leads to an enhanced tumour cell invasion and metastasis formation (Sahay et al., 

2015). 

In prostate cancer, the ectopic expression of miR-143 and miR-145 in PC-3 tumour cells 

inhibits bone metastasis formation in vivo by preventing EMT, and by reducing tumour cell 

migration (Croset et al., 2015; Ell & Kang, 2014). These inhibitory effects of miR-145 on 

EMT and tumour cell migration occur through repression of the oncogenic protein HEF1 

(Croset et al., 2015; Ell & Kang, 2014). MiR-203 is also a tumour suppressor whose 

expression is inversely correlated with prostate cancer bone metastases (Siu et al., 2018). 

Reconstitution of metastatic prostate cancer cells with miR-203 suppresses bone metastasis 

formation in animals by inhibiting EMT, invasion, and motility (Saini et al., 2011). The 

capacity of miR-203 to inhibit bone metastasis formation has been associated with its ability 

to directly repress Survivin/BIRC5 expression, an inhibitor of apoptosis (Saini et al., 2011). 

Additionally, miR-203 represses the activation of the EGFR signalling pathway in prostate 

cancer cells (Siu et al., 2018). A role for miR-203 in the inhibition of bone metastases caused 

by non-small cell lung cancer has also been reported (Wei et al., 2017). Several other 
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miRNAs have been shown to control early stages of bone metastasis formation, whose 

functions are summarized in Table 2. 

 

MSC-derived miRNAs 

Entering a foreign environment, such as bone, poses tumour cells with numerous 

challenges regarding survival and proliferation. It is therefore likely that tumour cells 

undergo dormancy as a mechanism to facilitate survival until the environmental conditions 

are sufficiently permissive for tumour outgrowth. 

Exosomal miR-23b and miR-222/223 released from MSCs have been reported to stimulate 

breast cancer dormancy in the bone marrow (Bliss et al., 2016; Ono et al., 2014). For 

example, miR-23b induces dormancy through the suppression of the myristoylated alanine-

rich C-kinase substrate (MARCKS) target gene, which encodes a protein that promotes cell 

proliferation and motility (Ono et al., 2014). 

 

MiRNAs regulate the adaptation of tumour cells to the bone microenvironment 

While residing in the bone marrow, tumour cells exit and re-enter a dormant state. During 

this phase, cancer cells undergo a selection and acquire the capacity for metastasis formation. 

Specifically bone metastatic cancer cells express genes that are normally expressed by bone 

cells (a process called osteomimicry), which endow cancer cells with a full competence for 

outgrowth in the bone marrow (Croset et al., 2015; Hesse & Taipaleenmaki, 2019). As 

described below, several miRNAs were reported to regulate cancer cell osteomimicry. 

RUNX2 plays a pivotal role in OB differentiation and it is aberrantly expressed in bone-

tropic breast- and prostate cancer cells (Haider & Taipaleenmaki, 2018). In bone-tropic 

tumour cells, RUNX2 promotes the progression of bone metastases and the development of 

osteolytic lesions (Haider & Taipaleenmaki, 2018). RUNX2 expression is repressed by 
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several miRNAs, including miR-135, miR-203, and miR-466. In this respect, miR-135 and 

miR-203 expression is absent in bone-tropic breast cancer cells and in tissue biopsies from 

breast cancer bone metastases that express RUNX2 (Haider & Taipaleenmaki, 2018). 

Conversely, transfection of miR-135 and miR-203 mimics in bone-tropic breast cancer cells 

results in a decreased skeletal tumour growth and decreased formation of osteolytic lesions in 

tumour-bearing mice (Taipaleenmaki et al., 2015). By repressing RUNX2, miR-135 and 

miR-203 indirectly inhibit the expression of genes (Il -11, Mmp-13, PthrP) that are associated 

with bone metastases (Taipaleenmaki et al., 2015). Similarly, miR-203 and miR-466 suppress 

prostate cancer bone metastases by directly targeting RUNX2 (Colden et al., 2017; Saini et 

al., 2011). Furthermore, restoring miR-203 in bone-tropic prostate cancer cells represses the 

expression of other genes associated with osteomimicry, including homeobox protein Dlx-5 

(DLX5), osteopontin (SPP1), and osteocalcin (BGLAP) (Saini et al., 2011). Similarly, 

reconstitution of prostate cancer cells with miR-466 represses SPP1 and BGLAP expression 

(Colden et al., 2017). 

MiRNA members of the miR-30 family (miR-30a, miR-30b, miR-30c, miR-30d, and miR-

30e) are suppressors of breast cancer bone metastasis (Croset et al., 2018). Expression of 

these miRs in bone-tropic triple-negative breast cancer cells was profoundly decreased. 

Conversely, overexpression of miR-30 family members in triple-negative breast cancer cells 

results in the reduction of bone metastasis formation in vivo. In vitro, miR-30 family 

members inhibit tumour cell invasion, and restore bone homeostasis by reversing the effects 

of tumour cell-conditioned medium on OC and OB formation. Mechanistically, miR-30s 

directly target a number of genes associated with the stimulation of OC differentiation (IL-8, 

IL-11), the inhibition of OB differentiation (DKK-1), tumour cell osteomimicry (RUNX2, 

CDH11), and invasiveness (CTGF, ITGA5, ITGB3) (Croset et al., 2018). Among these 

genes, silencing of CDH11 or ITGA5 in triple-negative breast cancer cells recapitulates the 
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inhibitory effects of miR-30 family members on bone metastasis formation in vivo. Overall, 

these findings provide evidence that miR-30 family members employ multiple mechanisms to 

impede breast cancer bone metastases, including osteomimicry (Croset et al., 2018). Of note, 

lncRNA MALAT1 acts as a sponge for miR-30, thus promoting OB differentiation of ADSCs 

(see section on bone physiology) (Yi  et al., 2019). MALAT1 is overexpressed in several 

cancers, including triple-negative breast cancer (Jadaliha et al., 2016). It is therefore tempting 

to speculate that in triple-negative breast cancer MALAT1 overexpressing cells may be 

responsible for miR-30 down-regulation, which then facilitates tumour cell osteomimicry. 

As previously described, miR-218-5p promotes OB differentiation by down-regulating 

Wnt signalling inhibitors (e.g., SOST-1, DKK-2, and sFRP2) during the process of 

osteogenesis (Hassan et al., 2012). MiR-218-5p also enhances Wnt activity in osteotropic 

breast cancer cells. Moreover, the expression of genes associated with osteomimicry (CXCR-

4, BSP, and SSPP1) and OC-mediated bone resorption (PTHrP) is increased in miR-218-

expressing breast cancer cells (Haider & Taipaleenmaki, 2018; Hassan et al., 2012; 

Taipaleenmaki et al., 2016). Transfection of bone-tropic breast cancer cells with anti-miR-

218-5p decreases Wnt activity, and reduces skeletal tumour burden and cancer-induced 

osteolysis in vivo (Taipaleenmaki et al., 2016). Furthermore, miR-218 secreted from breast 

cancer cells can directly down-regulate type I collagen expression by OBs, thereby impairing 

bone integrity (Liu et al., 2018). Taken together, these results (Haider & Taipaleenmaki, 

2018; Liu et al., 2018) indicate that inhibition of miR-218-5p can attenuate the activity of the 

“vicious cycle” during bone metastasis progression, suggesting that it could be an attractive 

therapeutic target. 
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Tumour-derived ncRNAs impair OB and OC function 

Several studies have shown that lncRNAs and miRNAs expressed and/or released by 

tumour cells can be directly involved in the formation of osteolytic or osteoblastic lesions 

(Table 2). 

The lncRNA MAYA mediates a crosstalk between the ROR1-HER3 and Hippo/Yes-

associated protein (YAP) pathways in breast cancer cells to promote lytic bone metastases (Li  

et al., 2017). Mechanistically, neuregulin induces the heterodimerization of receptor tyrosine 

kinase-like orphan receptor (ROR)-1 and receptor tyrosine kinase erbB-3 (HER3), which 

leads to the phosphorylation of HER3 in breast cancer cells. In turn, HER3 phosphorylation 

recruits a MAYA-containing complex that methylates the serine/threonine kinase 

Hippo/MST1 and activates YAP. This results in the translocation of YAP to the nucleus and 

the increased expression of connective tissue growth factor (CTGF) (Li  et al., 2017). CTGF 

is a factor that promotes OC differentiation and activity. In vivo, the treatment of animals 

with an antibody against CTGF prevents the formation of osteolytic metastases caused by 

human MDA- MB-231 breast cancer cells (Shimo et al., 2006). 

Increased MALAT1 expression in NSCLC is associated with a poor clinical outcome, 

including bone metastases (Liu et al., 2016). MALAT1 is overexpressed in several other 

cancers, where it promotes tumour cell invasion and proliferation (Liu et al., 2016). It has 

been reported that MALAT1 expression is increased in PC3 prostate cancer cells if  co-

cultured with primary mouse OBs (Sebastian et al., 2015). Moreover, MALAT1 expression 

in PC3 cells is further enhanced upon co-culture with mouse OBs lacking Sost (Sebastian et 

al., 2015). However, the underlying mechanisms by which SOST regulates MALAT1 

expression in tumour cells are unknown. 

RUNX2-AS1 is released by myeloma cells and is transferred to MSCs. In MSCs, RUNX2-

AS1 represses RUNX2 expression through the formation of a duplex with RUNX2 pre-
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mRNA, which then blocks OB differentiation (Li  et al., 2018a). MiR-124 is a tumour 

suppressor whose expression is down-regulated in several cancer types (Cai et al., 2018). Its 

expression is also substantially reduced in breast cancer bone metastases (Cai et al., 2018). 

Experimentally, restoration of miR-124 expression in bone-tropic breast cancer cells reduces 

the progression of bone metastases in animals (Cai et al., 2018). Mechanistically, miR-124 

represses the expression of IL-11 by breast cancer cells, which is a tumour-derived factor 

promoting bone resorption (Cai et al., 2018; Croucher et al., 2016). Of note, IL-11 expression 

is inversely correlated with the expression of miR-124, and high expression of IL-11 in bone 

metastases is associated with an overall shorter survival of patients (Cai et al., 2018). 

Tumour-derived exosomal miRNAs can also affecting the function of bone cells. For 

example, exosomal miR-141 and miR-940 produced by prostate cancer cells are taken up by 

OB precursors and promote OB differentiation and proliferation, thereby facilitating the 

formation of sclerotic bone metastases (Hashimoto et al., 2018; Ye et al., 2017). 

Mechanistically, miR-141 activates p38-MAPKinases and increases OPG expression in OBs 

while miR-940 promotes osteogenic differentiation of MSCs via targeting ARHGAP1 (Rho 

GTPase Activating Protein 1) and FAM134A (Family with Sequence Similarity 134 Member 

A) (Hashimoto et al., 2018; Ye et al., 2017). Conversely, miR-218 secreted from breast 

cancer cells directly inhibits type I collagen deposition by OBs (Liu et al., 2018). Similarly, 

lung adenocarcinoma cell-derived exosomal miR-21 facilitates OC differentiation in vitro 

(Hu et al., 2017). MiR-21 exerts its promoting effect on OC differentiation via targeting 

programme cell death 4 (PDCD4), a repressor of c-Fos, which is an important transcription 

factor for OC differentiation (Hu et al., 2017). 
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Circulating ncRNAs and their value as biomarkers 

NcRNAs that are released into body fluids (e.g., serum, plasma, urine, saliva) are either 

encapsulated within extracellular vesicles or are associated with high-density lipoproteins or 

AGO proteins, which provides protection from nuclease-mediated degradation (Anfossi et 

al., 2018; Li  et al., 2018b). Thus, circulating ncRNAs are rather stable, and a growing body 

of evidence suggests that they might be useful as biomarkers in cancer (Anfossi et al., 2018; 

Kang, 2016; Mishra, 2014; Wan-Ibrahim et al., 2016). However, the prognostic value of 

ncRNAs in predicting the risk of bone metastases in patients with cancer clearly needs to be 

addressed. 

Ell and colleagues identified a series of 4 miRNAs (miR-16, miR-211, miR-378, and let-

7a) that were up-regulated during OC differentiation and induced by conditioned medium 

from breast cancer cells (Ell et al., 2013). The authors thought to investigate this group of 

miRNAs as potential biomarkers associated with lytic bone metastases in patients. They 

found that the expression of miR-16 and miR-378 was consistently increased in the serum of 

breast cancer patients with bone metastases (n = 38), compared to healthy controls (n = 21) 

(Ell et al., 2013). The amount of miR-10b in the serum was also significantly increased in 

breast cancer patients with bone metastases (n = 22), compared to breast cancer patients 

without bone metastases (n = 100) or healthy control subjects (n = 59) (Zhao et al., 2012). In 

prostate cancer, the abundance of miR-218 was greatly reduced in the serum of patients with 

bone metastases (n = 38), compared to patients with no metastases (n = 115) (Peng et al., 

2019). Conversely, the abundance of miRNAs (miR-409-3p/5p, miR-154*, and miR-379) in 

the delta-like 1 homolog-deiodinase, iodothyronine 3 (DLK1-DIO3) cluster was increased in 

the serum of patients with metastatic prostate cancer, and an elevated expression of miR-154 

and miR-379 was observed in bone metastatic prostate cancer cells in situ. This suggests that 
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miRNAs of the DLK1-DIO3 cluster could serve as biomarkers in patients with advanced 

prostate cancer (Gururajan et al., 2014). 

Of note, the identification of circulating bone-derived miRNAs to predict specific stages 

of the disease has been suggested for bone-related pathologies other than cancer. For 

example, Seeliger and colleagues identified five miRNAs (miR-21-5p, miR-23a-3p, miR-24-

3p, miR-100-5p, and miR-125b-5p) whose expression levels are increased in both the serum 

and bone tissue of osteoporotic patients with osteoporotic fractures (Seeliger et al., 2014). A 

correlation with bone mineral density in osteoporotic patients was also observed for miR-21-

5p, miR-24-3p, miR-93-5p, miR-100-5p, and miR-125b-5p (Kelch et al., 2017). Additionally, 

intracellular studies revealed a simultaneous up-regulation of miR-21-5p, miR-93-5p, miR-

100-5p and miR125b-5p in OBs and in OCs, whereas miR-148a-3p up-regulation was 

specific for osteoporotic OCs (Kelch et al., 2017). Overall, these findings (Seeliger et al., 

2014; Kelch et al., 2017; Cheng et al., 2019) suggest these miRNAs may be useful 

biomarkers for early diagnosis of osteoporosis. None of these miRNAs associated with 

osteoporosis did however overlap with those associated with breast cancer-induced bone 

destruction (Ell et al., 2013). 

Not only miRNAs, but also lncRNAs and circRNAs could potentially serve as biomarkers 

to predict the risk of bone metastases in patients with advanced cancer. For example, 

MALAT1 is measurable in the cellular fraction of peripheral human blood, and it has been 

proposed to be useful as a biomarker for the diagnosis of NSCLC (Weber et al., 2013). Given 

that MALAT1 is highly expressed in tissues from NSCLC patients with bone metastases 

compared to tissues from patients without bone metastases (Liu et al., 2016), it is likely that 

circulating MALAT1 could serve as a biomarker to predict the onset of skeletal-related 

events in NSCLC.  
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Interestingly, circRNAs are more stable than miRNAs and lncRNAs (Suzuki & Tsukahara, 

2014), and they are enriched in exosomes compared to cells from where they are secreted (Li  

et al., 2015), suggesting they might be used as biomarkers for human cancers (Kristensen et 

al., 2018; Meng et al., 2017; Wang et al., 2016).  

 

Concluding remarks 

In this review, we describe the properties of ncRNAs, and we show that the dysregulation 

of ncRNAs in tumour cells and/or bone cells as well as the shuttling of ncRNAs between 

tumour cells and bone cells lead to the construction of a cancer niche in bone, which is 

essential for tumour progression (Figure 2). Interestingly, the identification of specific 

ncRNAs involved in bone metastasis formation and progression raises the possibility of 

developing novel biomarkers, which could provide important insight to predict the risk of 

relapse in patients with cancer. Likewise, the regulatory activity of ncRNAs in bone 

homeostasis and their dysregulation in bone metastasis encourage the development of 

ncRNA-based therapeutics. 

 

Nomenclature of Targets and Ligands: 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017). 
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Table 1- Noncoding RNAs (ncRNAs) involved in normal osteoblast (OB) and osteoclast 
(OC) functions. 
 

Function ncRNA name Target(s) References 

Long non-coding RNAs (lncRNAs) 

Inhibition of OB 
differentiation 

ANCR (DANCR) Runx2, miR-758 
(Zhu & Xu, 2013; Peng et al., 
2018) 

lnc-RUNX2-AS1 Runx2 (Li et al., 2018a) 

Promotion of OB 
differentiation 

H19 

TGF-く1/Smadγ/HDAC signalling 
pathway, miR-449b, miR-107, miR-
27b, miR-34a, miR-106b, miR-449a, 
miR-125a, miR-17, miR-141, miR-
22, miR-138, let-7 

(Gabory et al., 2010; Raveh et al., 
2015; Huang et al., 2015; Liao et 
al., 2017; Liang et al., 2016; Wu 
et al., 2018; Peng et al., 2017; 
Wei et al., 2014) 

HOTAIR 
HoxD, Hoxc11, Hoxc12, Dlk1-Meg3, 
Igf2-H19, Hottip 

(Rinn et al., 2007; Amandio et al., 
2016; Huynh et al., 2017) 

Linc-ROR miR-138, miR-145 (Feng et al., 2018) 

lncRNA-1 Runx2/p57, Sp7  (Nardocci et al., 2018) 

MALAT1 miR-30 (Yi et al., 2019) 

MEG3 Sox2 (Zhuang et al., 2015) 

Promotion of dental and 
craniofacial 
development 

Msx1-AS Msx1 (Blin-Wakkach et al., 2001) 

MicroRNAs (miRNAs) 

(1) MiRNAs and osteoblasts (OBs): 

Inhibition of OB 
differentiation 

let-7c Scd-1 (Zhou et al., 2018) 

miR-100 Bmpr2 (Ell et al., 2014) 

miR-106 Bmp2 (Ell et al., 2014) 

miR-133a Runx2 (Zhang et al., 2011) 

miR-135a Runx2 (Zhang et al., 2011) 

miR-137 Runx2 (Zhang et al., 2011) 

miR-138 Fak (Ell et al., 2014) 

miR-139-3p Elk1 (Wang et al., 2018b) 

miR-141 Dlx5 (Ell et al., 2014) 

miR-143 Osterix (Ell et al., 2014) 
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miR-155 Socs1, Mitf (Ell et al., 2014) 

miR-17-5p Bmp2 (Ell et al., 2014) 

miR-182-5p Adcy6 (Pan et al., 2018) 

miR-204 Runx2 (Zhang et al., 2011) 

miR-205 Runx2 (Zhang et al., 2011) 

miR-200a Dlx5 (Ell et al., 2014) 

miR-206 Cx43 (Ell et al., 2014) 

miR-208 Ets1 (Ell et al., 2014) 

miR-214 Atf4, Osterix (Ell et al., 2014) 

miR-217 Runx2 (Zhang et al., 2011) 

miR-23a Fak, Runx2, Satb2 (Ell et al., 2014) 

miR-23a cluster HoxA cluster function (Godfrey et al., 2018) 

miR-24-2 Fak, Runx2, Satb2 (Ell et al., 2014) 

miR-27a Fak, Runx2, Satb2 (Ell et al., 2014) 

miR-30 Smad1, Runx2 (Ell et al., 2014) 

miR-30c Runx2 (Zhang et al., 2011) 

miR-338 Runx2 (Zhang et al., 2011) 

miR-34 Satb2, Runx2, Notch pathway (Ell et al., 2014) 

miR-34c Runx2 (Zhang et al., 2011) 

miR-542-3p Bmp7 (Ell et al., 2014) 

miR-764-5p Chip/Stub1 (Ell et al., 2014) 

miR-93 Sp7 (Ell et al., 2014) 

Promotion of OB 
differentiation 

miR-15b Smurf1 (Ell et al., 2014) 

miR-17~92 
 

(Ell et al., 2014) 

miR-181a Tgfbi (Ell et al., 2014) 

miR-20a PPARg, Bambi, Crim1 (Ell et al., 2014) 

miR-218 Sost-1, Dkk-2, Sfrp2 (Hassan et al., 2012) 

miR-219a-5p 
 

(Aquino-Martinez et al., 2018) 

miR-221 Zzpm2 (Zheng et al., 2018) 

miR-29a ON, Dkk1, Krm2, sFrp2 (Ell et al., 2014) 

miR-332 Tob2 (Ell et al., 2014) 

miR-342-3p Atf3 (Han et al., 2018) 

miR-335-5p Dkk1 (Ell et al., 2014) 

miR-451a Osr1 (Karvande et al., 2018) 

miR-874 Sufu (Lin et al., 2018) 

(2) MiRNAs and osteocytes: 

Promotion of osteocytes 
apoptosis 

miR-21 Pten (Davis et al., 2017) 

miR-218 IせB kinase B (Davis et al., 2017) 
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(3) MiRNAs and osteoclasts (OCs): 

 
 
 
 
 

Inhibition of OC 
differentiation 

miR-124-3p NFATc1, RhoA, Rac1 (Ji et al., 2016) 

miR-125a-5p Traf6 (Ji et al., 2016) 

miR-145 Sox9, Smad3 (Yu et al., 2018) 

miR-146a-5p Traf6, Stat1 (Ji et al., 2016) 

miR-155 Socs1, Mitf (Ell et al., 2014) 

miR-17 EphA4 (Lau & Sheng, 2018) 

miR-218 p38 MAPK, NFATc1 (Qu et al., 2015) 

miR-218-5p p38MAPK-c-Fos-NFATc1 (Ji et al., 2016) 

miR-26a-5p Ctgf (Ji et al., 2016) 

miR-27a Runx2 (Guo et al., 2018b) 

miR-30a 
 

(Yin et al., 2017) 

miR-34a-5p Tgif2 (Ji et al., 2016) 

miR-503-5p Rank (Ji et al., 2016) 

miR-7b-5p DC-Stamp (Ji et al., 2016) 

Promotion of OC 
differentiation 

miR-148a-3p MafB (Ji et al., 2016) 

miR-183-5p HO-1 (Ji et al., 2016) 

miR-199a-5p Mafb (Guo et al., 2018a) 

miR-29 Cdc42, Srgap2, Nfia, Cd93, Calcr (Ji et al., 2016) 

miR-31-5p RhoA (Ji et al., 2016) 

miR-422a Cbl, Cd226, Igf1, Pag1, Tob2 (Ji et al., 2016) 

miR-9718 Pias3 (Ji et al., 2016) 

Promotion/inhibition of 
OC differentiation 

miR-21-5p FasL, Pdcd4 (Ji et al., 2016) 

miR-223-3p Nfia, Ikk (Ji et al., 2016) 

miR-29b Cdc42, Srgap2 (Ell et al., 2014) 

Promotion of OC 
activity 

miR-133a-3p Cxcl11, Cxcr3, Slc39A1 (Ji et al., 2016) 

miR-182 Pkr (Inoue et al., 2018) 

Promotion of OC 
autophagy 

miR-155 Mitf (Sul et al., 2018) 

miR-20a PPARg, Bambi, Crim1 (Sun et al., 2015) 

(4) MiRNAs and chondrocytes: 

Inhibition of 
chondrocyte 

differentiation 

miR-145 Sox9 (Ell et al., 2014) 

miR-34a 
 

(Ell et al., 2014) 

miR-199a-3p Smad1 (Ell et al., 2014) 
Promotion of 

chondrocyte activity 
miR-140 Hdac4, Dnpep (Ell et al., 2014) 
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Promotion of 
chondrocyte 
development 

miR-17~92   (Ell et al., 2014) 

CircularRNA (CircRNA) 
Inhibition of OB 
differentiation 

circIGSF11   (Zhang et al., 2018b) 
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Table 2- Dysregulated non-coding RNAs (ncRNAs) involved in bone metastasis. 
 

NcRNA 
(expression level) 

Function(s) Target(s) References 

Osteoclasts: 
miR-133a (up) Promotes bone resorption in vivo  Mitf, Traf6, Calcr, Mmp14 (Ell et al., 2013) 
miR-141-3p (up) Promotes bone resorption in vivo Mitf, Traf6, Calcr, Mmp14 (Ell et al., 2013) 
miR-190 (up) Promotes bone resorption in vivo Mitf, Traf6, Calcr, Mmp14 (Ell et al., 2013) 
miR-21 (up) Promotes bone resorption in vitro Pdcd4 (Hu et al., 2017) 
miR-214-3p (up)  Promotes bone resorption in vivo Traf3 (Liu et al., 2017) 
miR-219-5p (up) Promotes bone resorption in vivo Mitf, Traf6, Calcr, Mmp14 (Ell et al., 2013) 

miR-34a (up) 
Inhibits bone resorption in vivo 
(MRX34 in clinical trial) 

Tgif2 
(Krzeszinski et al., 
2014) 

Osteoblasts: 
miR-141 (up) Promotes bone formation in vivo p38-Mapk, Opg (Ye et al., 2017) 

miR-214-3p (up) Inhibits bone formation in vivo Atf4 
(Haider & 
Taipaleenmaki, 2018) 

miR-218 (up) Promotes bone disruption in vitro Collagen-type I (Liu et al., 2018) 

Breast cancer cells: 
let-7g (up) Inhibits bone metastasis in vivo Hmga2 (Ell & Kang, 2014) 
MALAT1 (up) Promotes bone metastasis in vitro miR-30 sponge (?) (Jadaliha et al., 2016) 

MAYA (up) Promotes bone metastasis in vivo CTGF (Li et al., 2017a) 

miR-10b (up) Promotes bone metastasis in vivo HoxD10 
(Croset et al., 2015; 
Ell & Kang, 2014; Ma 
et al., 2007) 

miR-124 (down) Promotes bone metastasis in vivo Il -11 (Cai et al., 2018) 
miR-126 (down) Promotes bone metastasis in vivo  (Tavazoie et al., 2008) 

miR-135 (down) Promotes bone metastasis in vivo Runx2 
(Taipaleenmaki et al., 
2015) 

miR-17 (up) Promotes bone metastasis in vivo Tbr2 
(Croset et al., 2015; 
Ell & Kang, 2014) 

miR-203 (down) Promotes bone metastasis in vivo Runx2 
(Taipaleenmaki et al., 
2015) 

miR-206 (down) Promotes bone metastasis in vivo  (Tavazoie et al., 2008) 
miR-21 (up) Promotes bone metastasis in vitro Pten, Pdcd4, Spry2 (Sahay et al., 2015) 

miR-218 (up) Promotes bone metastasis in vivo WNT activity 

(Liu et al., 2018; 
Hassan et al., 2012; 
(Taipaleenmaki et al., 
2015) 

miR-30s (up) Inhibits bone metastasis in vivo 
Il -8, Il-11, Dkk-1 Runx2, 
Cdh11, Ctgf, Itga5, Itgb3 

(Croset et al., 2018) 

miR-335 (down) Promotes bone metastasis in vivo Sox4, Tnc (Tavazoie et al., 2008) 

Prostate cancer cells: 
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MALAT1 (up) Promotes bone metastasis in vitro  
(Sebastian et al., 
2015) 

miR-143 (up) Inhibits bone metastasis in vivo Hef1 
(Croset et al., 2015; 
Ell & Kang, 2014) 

miR-145 (up) Inhibits bone metastasis in vitro Hef1 
(Croset et al., 2015; 
Ell & Kang, 2014) 

miR-146a (up) 
Inhibits proliferation and 
adhesion in vitro 

Rock (Ell & Kang, 2014) 

miR-16 (up)  Inhibits bone metastasis in vivo  (Ell & Kang, 2014) 

miR-203 (up) Inhibits bone metastasis in vivo 
Survivin/Birc5 
EGFR signaling pathway, 
Runx2, Dlx5, Spp1, Bglap 

(Siu et al., 2018; Saini 
et al., 2011) 

miR-466 (up) Inhibits bone metastasis in vivo Runx2, Spp1, Bglap 
(Colden et al., 2017; 
Saini et al., 2011) 

Non-small cell lung cancer cells: 
MALAT1 (up) Promotes bone metastasis in vivo  (Liu et al., 2016) 

miR-203 (down) Promotes bone metastasis in vivo 
Bax, Casp-3, p53, pSmad2, 
Tgf-く1 

(Wei et al., 2017) 

Mesenchymal stem cells: 

let-7 (up) 
Promotion of cancer progression 
in vivo 

Il -6 (Ell & Kang, 2014) 

miR-23b (up) 
Promotes breast cancer dormancy 
in vitro 

Marcks (Ono et al., 2014) 

miR-222/223 (up) 
Promotes breast cancer dormancy 
in vivo 

 (Bliss et al., 2016) 

RUNX2-AS1 (up) 
Inhibits osteoblast differentiation 
in vivo 

Runx2 (Li  et al., 2018a) 
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Figure 1- Schematic representation of ncRNA mechanisms of action. 
NcRNAs regulate gene expression both at transcriptional and post-transcriptional levels. 

LncRNA (left box), miRNA (middle box), and circRNA (right box) act in a variety of ways 
promoting or inhibiting the expression of specific targets. Mechanisms of action of ncRNAs 

are summarized within each box. 
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Figure 2- Involvement of ncRNAs in ‘vicious cycle’ of bone metastases. 
A metastatic cancer cell displays a different gene expression pattern in comparison to a 
normal cell in part as a result of dysregulated expression of lncRNAs, miRNAs, and 

circRNAs, which in turn alters the expression of proteins involved in metastasis formation. 
Moreover, ncRNAs may serve as inter-cellular messengers for cell-cell communication. 

Specifically, ncRNAs can be secreted by cancer cells and bone cells (osteoclast, osteoblast) 
either encapsulated within extracellular vesicles (EVs), such as microvesicles and exosomes, 
or as ncRNA-(lipo-)protein complexes, which are taken up by recipient cells. These ncRNAs 
can then reprogram recipient cells to facilitate bone metastases formation. NcRNAs involved 
in bone metastasis formation and progression are listed for each cell type (metastatic cancer 

cell, osteoblast, osteoclast). 
 


