12 research outputs found

    Suspension High Velocity Oxy-Fuel (SHVOF)-sprayed alumina coatings: microstructure, nanoindentation and wear

    Get PDF
    Suspension High Velocity Oxy Fuel Spraying (SHVOF) can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from sub-micron sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt% amorphous phase and 26 wt% crystalline phase (95 wt% gamma and 3 wt% alpha alumina) while the 72 kW coating contained lower 58 wt% amorphous phase and 42 wt% crystalline phases (73 wt% was alpha and 26 wt % gamma). The 101 kW coating had a dry sliding specific wear rate between 4-4.5 x 10-5 mm3/Nm, 2 orders of magnitude higher than the 72 kW coating wear rate of 2-4.2 x 10-7 mm3/Nm. A severe wear regime dominated by brittle fracture and grain pull out of the coating was responsible for the wear of the 101 kW coating, explained by mean fracture toughness three times lower than the 72 kW coating, owing to the almost complete absence of alpha alumina

    Surface modification of plasma-sprayed alumina deposits by high-energy ion beams

    No full text
    This paper reports on characteristics of alumina-type coatings deposited on steel substrates and treated with pulsed plasma streams containing high-energy ion beams (N, Ar, and Ti+N). Originally matted surfaces of the ceramic layers, which were created by plasma spraying of gray alumina, were changed into shiny ones, and splat boundaries disappeared due to the melting of a thin surface layer. The thickness of this modified layer did not exceed 1 žm. A higher content of Ti was found on the surfaces of the Ti- and N-treated samples only

    Ultrafine-grained W-Cr composite prepared by controlled W-Cr solid solution decomposition

    No full text
    The application of non-equilibrium methods such as Mechanical Alloying and Field Assisted Sintering enables the formation of a single solid solution in immiscible systems, or the ones characterized by a miscibility gap. This work shows that W-Cr solid solution can be used as an intermediate step to produce ultrafine-grained composite alloys with rod-like microstructural features. It is shown that a significant increase in strength can be achieved without an increase in hardness using this top-down material design.Web of Science304art. no. 13072
    corecore