2 research outputs found

    Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol adipate)

    Get PDF
    Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5–9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates

    Autoxidized Oleic Acid Bifunctional Macro Peroxide Initiators for Free Radical and Condensation Polymerization. Synthesis and Characterization of Multiblock Copolymers

    No full text
    Secilmis Canbay, Hale/0000-0002-3783-8064; Hazer, Baki/0000-0001-8770-805XWOS: 000491549500023TARAMASCOPUSIndex: SCI-E, WOS, ScopusTARAMAWOSAutoxidation of unsaturated fatty acids gives fatty acid macroperoxide initiators containing two functionalities which can lead to free radical and condensation polymerizations in a single pot. The oleic acid macroperoxide initiator obtained by ecofriendly autoxidation (Pole4m) was used in both the free radical polymerization of styrene and the condensation polymerization with amine-terminated polyethylene glycol (PEGNH2) to obtain triblock branched graft copolymers. The narrow molar masses of the poly oleic acid-g-styrene (PoleS) and poly oleic acid-g-styrene-g-PEG (PoSG) graft copolymers were successfully obtained. The inclusion of oleic acid decreased the glass transition temperature of the polystyrene segment because of the plasticizing effect of oleic acid. In addition, a mechanical property of the copolymer was improved when compared with the pure PS. Structural characterization, morphology of the fracture surface, micelle formation, thermal analysis and molar masses of the obtained products were also evaluated.Kapadokya University Research Fund [KUN.2018-BAGP-001]; Bulent Ecevit University Research FundBulent Ecevit University [BEU-2017-72118496-01]This work was supported by the Kapadokya University Research Fund (KUN.2018-BAGP-001) and Bulent Ecevit University Research Fund (#BEU-2017-72118496-01). The Authors thank to Koray Alper and Fatih Pekdemir for taking SEM and FTIR spectra, respectively. The Authors thank to Serdar Coban, Sidika Sarac Tabakli and Gulsen Darici (Cilas Kaucuk, Devrek, Zonguldak, Turkey) for taking stress-strain measurements
    corecore