1,468 research outputs found

    Active and Passive Fields in Turbulent Transport: the Role of Statistically Preserved Structures

    Full text link
    We have recently proposed that the statistics of active fields (which affect the velocity field itself) in well-developed turbulence are also dominated by the Statistically Preserved Structures of auxiliary passive fields which are advected by the same velocity field. The Statistically Preserved Structures are eigenmodes of eigenvalue 1 of an appropriate propagator of the decaying (unforced) passive field, or equivalently, the zero modes of a related operator. In this paper we investigate further this surprising finding via two examples, one akin to turbulent convection in which the temperature is the active scalar, and the other akin to magneto-hydrodynamics in which the magnetic field is the active vector. In the first example, all the even correlation functions of the active and passive fields exhibit identical scaling behavior. The second example appears at first sight to be a counter-example: the statistical objects of the active and passive fields have entirely different scaling exponents. We demonstrate nevertheless that the Statistically Preserved Structures of the passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the sub-leading zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in turbulence can be understood with the same generality as those of passive fields.Comment: 13 pages, 13 figures, submitted to Phys. Rev.

    Tumbling of polymers in semidilute solution under shear flow

    Full text link
    The tumbling dynamics of individual polymers in semidilute solution is studied by large-scale non-equilibrium mesoscale hydrodynamic simulations. We find that the tumbling time is equal to the non-equilibrium relaxation time of the polymer end-to-end distance along the flow direction and strongly depends on concentration. In addition, the normalized tumbling frequency as well as the widths of the alignment distribution functions for a given concentration-dependent Weissenberg number exhibit a weak concentration dependence in the cross-over regime from a dilute to a semidilute solution. For semidilute solutions a universal behavior is obtained. This is a consequence of screening of hydrodynamic interactions at polymer concentrations exceeding the overlap concentration

    On the terminal velocity of sedimenting particles in a flowing fluid

    Full text link
    The influence of an underlying carrier flow on the terminal velocity of sedimenting particles is investigated both analytically and numerically. Our theoretical framework works for a general class of (laminar or turbulent) velocity fields and, by means of an ordinary perturbation expansion at small Stokes number, leads to closed partial differential equations (PDE) whose solutions contain all relevant information on the sedimentation process. The set of PDE's are solved by means of direct numerical simulations for a class of 2D cellular flows (static and time dependent) and the resulting phenomenology is analysed and discussed.Comment: 13 pages, 2 figures, submitted to JP

    A retrospective study of cryptorchidectomy in horses: Diagnosis, treatment, outcome and complications in 70 cases

    Get PDF
    The aim of the study was to investigate the breed predisposition and the diagnostic and surgical management of horses referred for cryptorchidism. The breed, localization of retained testis, diagnosis, type of surgical treatment and complications were analyzed. Seventy horses were included in the study; the Western Riding horse breeds were the most affected (Quarter Horse 34/70, 48.5%; Appaloosa 9/70, 12.8%). In unilateral cryptorchids (65/70, 92.8%) the most common location for a retained testis was the left abdomen (28/65, 43%), while in bilateral cryptorchids (5/70, 7.1%), bilateral abdominal retention was the most frequent (3/5, 6%). Information about testis localization was achieved through transabdominal ultrasound (30/49 cases, 61.2%), through per rectum palpation (21/49 cases, 42.9%) and through inguinal palpation (14/49 cases, 28.9%). Cryptorchidectomy was achieved with standing laparoscopy (44/70 cases, 62.8%), or with open inguinal orchiectomy in general anesthesia (26/70 cases, 37.2%). Complications during laparoscopy were spleen puncture (1/44, 2.2%), a self-limiting bleeding from the spermatic cord (10/44 cases, 22.7%), hyperthermia (3/44 cases, 6.8%), and emphysema (15/44, 34%). During inguinal open cryptorchidectomy difficulties with identifying the inguinal testis during surgery (8/26 cases, 30.8%) and a moderate and self-limiting swelling of the inguinal region after surgery (17/26, 65.4%) were observed. For orchiectomy, a standing laparoscopy was confirmed as the preferred procedure for an abdominally retained testis with almost no complications

    Active and passive fields face to face

    Full text link
    The statistical properties of active and passive scalar fields transported by the same turbulent flow are investigated. Four examples of active scalar have been considered: temperature in thermal convection, magnetic potential in two-dimensional magnetohydrodynamics, vorticity in two-dimensional Ekman turbulence and potential temperature in surface flows. In the cases of temperature and vorticity, it is found that the active scalar behavior is akin to that of its co-evolving passive counterpart. The two other cases indicate that this similarity is in fact not generic and differences between passive and active fields can be striking: in two-dimensional magnetohydrodynamics the magnetic potential performs an inverse cascade while the passive scalar cascades toward the small-scales; in surface flows, albeit both perform a direct cascade, the potential temperature and the passive scalar have different scaling laws already at the level of low-order statistical objects. These dramatic differences are rooted in the correlations between the active scalar input and the particle trajectories. The role of such correlations in the issue of universality in active scalar transport and the behavior of dissipative anomalies is addressed.Comment: 36 pages, 20 eps figures, for the published version see http://www.iop.org/EJ/abstract/1367-2630/6/1/07

    The Richardson's Law in Large-Eddy Simulations of Boundary Layer flows

    Full text link
    Relative dispersion in a neutrally stratified planetary boundary layer (PBL) is investigated by means of Large-Eddy Simulations (LES). Despite the small extension of the inertial range of scales in the simulated PBL, our Lagrangian statistics turns out to be compatible with the Richardson t3t^3 law for the average of square particle separation. This emerges from the application of nonstandard methods of analysis through which a precise measure of the Richardson constant was also possible. Its values is estimated as C20.5C_2\sim 0.5 in close agreement with recent experiments and three-dimensional direct numerical simulations.Comment: 15 LaTex pages, 4 PS figure

    Generally covariant state-dependent diffusion

    Get PDF
    Statistical invariance of Wiener increments under SO(n) rotations provides a notion of gauge transformation of state-dependent Brownian motion. We show that the stochastic dynamics of non gauge-invariant systems is not unambiguously defined. They typically do not relax to equilibrium steady states even in the absence of extenal forces. Assuming both coordinate covariance and gauge invariance, we derive a second-order Langevin equation with state-dependent diffusion matrix and vanishing environmental forces. It differs from previous proposals but nevertheless entails the Einstein relation, a Maxwellian conditional steady state for the velocities, and the equipartition theorem. The over-damping limit leads to a stochastic differential equation in state space that cannot be interpreted as a pure differential (Ito, Stratonovich or else). At odds with the latter interpretations, the corresponding Fokker-Planck equation admits an equilibrium steady state; a detailed comparison with other theories of state-dependent diffusion is carried out. We propose this as a theory of diffusion in a heat bath with varying temperature. Besides equilibrium, a crucial experimental signature is the non-uniform steady spatial distribution.Comment: 24 page

    Turbulence and passive scalar transport in a free-slip surface

    Full text link
    We consider the two-dimensional (2D) flow in a flat free-slip surface that bounds a three-dimensional (3D) volume in which the flow is turbulent. The equations of motion for the two-dimensional flow in the surface are neither compressible nor incompressible but strongly influenced by the 3D flow underneath the surface. The velocity correlation functions in the 2D surface and in the 3D volume scale with the same exponents. In the viscous subrange the amplitudes are the same, but in the inertial subrange the 2D one is reduced to 2/3 of the 3D amplitude. The surface flow is more strongly intermittent than the 3D volume flow. Geometric scaling theory is used to derive a relation between the scaling of the velocity field and the density fluctuations of a passive scalar advected on the surface.Comment: 11 pages, 10 Postscript figure
    corecore