1,638 research outputs found
Spin-dependent properties of a two-dimensional electron gas with ferromagnetic gates
A theoretical prediction of the spin-dependent electron self-energy and
in-plane transport of a two-dimensional electron gas in proximity with a
ferromagnetic gate is presented. The application of the predicted
spin-dependent properties is illustrated by the proposal of a device
configuration with two neighboring ferromagnetic gates which produces a
magnetoresistance effect on the channel current generated by nonmagnetic source
and drain contacts. Specific results are shown for a silicon inversion layer
with iron gates. The gate leakage current is found to be beneficial to the spin
effects.Comment: 3 pages, 2 figures, Replaced with revised versio
Ferromagnetic imprinting of spin polarization in a semiconductor
We present a theory of the imprinting of the electron spin coherence and
population in an n-doped semiconductor which forms a junction with a
ferromagnet. The reflection of non-equilibrium semiconductor electrons at the
interface provides a mechanism to manipulate the spin polarization vector. In
the case of unpolarized excitation, this ballistic effect produces spontaneous
electron spin coherence and nuclear polarization in the semiconductor, as
recently observed by time-resolved Faraday rotation experiments. We investigate
the dependence of the spin reflection on the Schottky barrier height and the
doping concentration in the semiconductor and suggest control mechanisms for
possible device applications.Comment: 4 pages with 2 figure
Quasiparticle Band Structure and Density Functional Theory: Single-Particle Excitations and Band Gaps in Lattice Models
We compare the quasiparticle band structure for a model insulator obtained
from the fluctuation exchange approximation (FEA) with the eigenvalues of the
corresponding density functional theory (DFT) and local density approximation
(LDA). The discontinuity in the exchange-correlation potential for this model
is small and the FEA and DFT band structures are in good agreement. In contrast
to conventional wisdom, the LDA for this model overestimates the size of the
band gap. We argue that this is a consequence of an FEA self-energy that is
strongly frequency dependent, but essentially local.Comment: 8 pages, and 5 figure
Spin accumulation in forward-biased MnAs/GaAs Schottky diodes
We describe a new means for electrically creating spin polarization in
semiconductors. In contrast to spin injection of electrons by tunneling through
a reverse-biased Schottky barrier, we observe spin accumulation at the
metal/semiconductor interface of forward-biased ferromagnetic Schottky diodes,
which is consistent with a theory of spin-dependent reflection off the
interface. Spatiotemporal Kerr microscopy is used to image the electron spin
and the resulting dynamic nuclear polarization that arises from the non
equilibrium carrier polarization.Comment: 13 pages, 4 figures, submitted for publicatio
Fractal Characterizations of MAX Statistical Distribution in Genetic Association Studies
Two non-integer parameters are defined for MAX statistics, which are maxima
of simpler test statistics. The first parameter, , is the
fractional number of tests, representing the equivalent numbers of independent
tests in MAX. If the tests are dependent, . The second
parameter is the fractional degrees of freedom of the chi-square
distribution that fits the MAX null distribution. These two
parameters, and , can be independently defined, and can be
non-integer even if is an integer. We illustrate these two parameters
using the example of MAX2 and MAX3 statistics in genetic case-control studies.
We speculate that is related to the amount of ambiguity of the model
inferred by the test. In the case-control genetic association, tests with low
(e.g. ) are able to provide definitive information about the disease
model, as versus tests with high (e.g. ) that are completely uncertain
about the disease model. Similar to Heisenberg's uncertain principle, the
ability to infer disease model and the ability to detect significant
association may not be simultaneously optimized, and seems to measure the
level of their balance
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors
Ferromagnetism is predicted in undoped diluted magnetic semiconductors
illuminated by intense sub-bandgap laser radiation . The mechanism for
photo-induced ferromagnetism is coherence between conduction and valence bands
induced by the light which leads to an optical exchange interaction. The
ferromagnetic critical temperature T_C depends both on the properties of the
material and on the frequency and intensity of the laser and could be above 1
K.Comment: 11 pages, 2 figures, preprint styl
Kondo Insulator: p-wave Bose Condensate of Excitons
In the Anderson lattice model for a mixed-valent system, the
hybridization can possess a -wave symmetry. The strongly-correlated
insulating phase in the mean-field approximation is shown to be a -wave Bose
condensate of excitons with a spontaneous lattice deformation. We study the
equilibrium and linear response properties across the insulator-metal
transition. Our theory supports the empirical correlation between the lattice
deformation and the magnetic susceptibility and predicts measurable ultrasonic
and high-frequency phonon behavior in mixed-valent semiconductors.Comment: 5 pages, 3 encapsulated PostScript figure
Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects
Summary Gene-based association approach could be regarded as a complementary analysis to the single SNP association analysis. We meta-analyzed the findings from the gene-based association approach using the genome-wide association studies (GWAS) data from Chinese and European subjects, confirmed several well established bone mineral density (BMD) genes, and suggested several novel BMD genes. Introduction The introduction of GWAS has greatly increased the number of genes that are known to be associated with common diseases. Nonetheless, such a single SNP GWAS has a lower power to detect genes with multiple causal variants. We aimed to assess the association of each gene with BMD variation at the spine and hip using gene-based GWAS approach. Methods We studied 778 Hong Kong Southern Chinese (HKSC) women and 5,858 Northern Europeans (dCG); age, sex, and weight were adjusted in the model. The main outcome measure was BMD at the spine and hip. Results Nine genes showed suggestive p value in HKSC, while 4 and 17 genes showed significant and suggestive p values respectively in dCG. Meta-analysis using weighted Z-transformed test confirmed several known BMD genes and suggested some novel ones at 1q21.3, 9q22, 9q33.2, 20p13, and 20q12. Top BMD genes were significantly associated with connective tissue, skeletal, and muscular system development and function (p<0.05). Gene network inference revealed that a large number of these genes were significantly connected with each other to form a functional gene network, and several signaling pathways were strongly connected with these gene networks. Conclusion Our gene-based GWAS confirmed several BMD genes and suggested several novel BMD genes. Genetic contribution to BMD variation may operate through multiple genes identified in this study in functional gene networks. This finding may be useful in identifying and prioritizing candidate genes/loci for further study. © International Osteoporosis Foundation and National Osteoporosis Foundation 2011.published_or_final_versionSpringer Open Choice, 21 Feb 201
- …