research

Fractal Characterizations of MAX Statistical Distribution in Genetic Association Studies

Abstract

Two non-integer parameters are defined for MAX statistics, which are maxima of dd simpler test statistics. The first parameter, dMAXd_{MAX}, is the fractional number of tests, representing the equivalent numbers of independent tests in MAX. If the dd tests are dependent, dMAX<dd_{MAX} < d. The second parameter is the fractional degrees of freedom kk of the chi-square distribution χk2\chi^2_k that fits the MAX null distribution. These two parameters, dMAXd_{MAX} and kk, can be independently defined, and kk can be non-integer even if dMAXd_{MAX} is an integer. We illustrate these two parameters using the example of MAX2 and MAX3 statistics in genetic case-control studies. We speculate that kk is related to the amount of ambiguity of the model inferred by the test. In the case-control genetic association, tests with low kk (e.g. k=1k=1) are able to provide definitive information about the disease model, as versus tests with high kk (e.g. k=2k=2) that are completely uncertain about the disease model. Similar to Heisenberg's uncertain principle, the ability to infer disease model and the ability to detect significant association may not be simultaneously optimized, and kk seems to measure the level of their balance

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 13/11/2020