39 research outputs found

    Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications

    Full text link
    This paper presents a transformational approach for model checking two important classes of metric temporal logic (MTL) properties, namely, bounded response and minimum separation, for nonhierarchical object-oriented Real-Time Maude specifications. We prove the correctness of our model checking algorithms, which terminate under reasonable non-Zeno-ness assumptions when the reachable state space is finite. These new model checking features have been integrated into Real-Time Maude, and are used to analyze a network of medical devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models

    Full text link
    This paper extends our Real-Time Maude formalization of the semantics of flat Ptolemy II discrete-event (DE) models to hierarchical models, including modal models. This is a challenging task that requires combining synchronous fixed-point computations with hierarchical structure. The synthesis of a Real-Time Maude verification model from a Ptolemy II DE model, and the formal verification of the synthesized model in Real-Time Maude, have been integrated into Ptolemy II, enabling a model-engineering process that combines the convenience of Ptolemy II DE modeling and simulation with formal verification in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Formal Visual Modeling of Real-Time Systems in e-Motions: Two Case Studies

    Full text link
    e-Motions is an Eclipse-based visual timed model transformation framework with a Real-Time Maude semantics that supports the usual Maude formal analysis methods, including simulation, reachability analysis, and LTL model checking. e-Motions is characterized by a novel and powerful set of constructs for expressing timed behaviors. In this paper we illustrate the use of these constructs --- and thereby implicitly investigate their suitability to define real-time systems in an intuitive way --- to define and formally analyze two prototypical and very different real-time systems: (i) a simple round trip time protocol for computing the time it takes a message to travel from one node to another, and back; and (ii) the EDF scheduling algorithm.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for Event-based Object Tracking

    Full text link
    Event cameras, which are asynchronous bio-inspired vision sensors, have shown great potential in a variety of situations, such as fast motion and low illumination scenes. However, most of the event-based object tracking methods are designed for scenarios with untextured objects and uncluttered backgrounds. There are few event-based object tracking methods that support bounding box-based object tracking. The main idea behind this work is to propose an asynchronous Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking. To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm, which asynchronously and effectively warps the spatio-temporal information of asynchronous retinal events to a sequence of ATSLTD frames with clear object contours. We feed the sequence of ATSLTD frames to the proposed ETD method to perform accurate and efficient object tracking, which leverages the high temporal resolution property of event cameras. We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD. The experimental results show the superiority of the proposed ETD method in handling various challenging environments.Comment: 9 pages, 5 figure

    Automatic Analysis of Consistency Properties of Distributed Transaction Systems in Maude

    Get PDF
    Many transaction systems distribute, partition, and replicate their data for scalability, availability, and fault tolerance. However, observing and maintaining strong consistency of distributed and partially replicated data leads to high transaction latencies. Since different applications require different consistency guarantees, there is a plethora of consistency properties---from weak ones such as read atomicity through various forms of snapshot isolation to stronger serializability properties---and distributed transaction systems (DTSs) guaranteeing such properties. This paper presents a general framework for formally specifying a DTS in Maude, and formalizes in Maude nine common consistency properties for DTSs so defined. Furthermore, we provide a fully automated method for analyzing whether the DTS satisfies the desired property for all initial states up to given bounds on system parameters. This is based on automatically recording relevant history during a Maude run and defining the consistency properties on such histories. To the best of our knowledge, this is the first time that model checking of all these properties in a unified, systematic manner is investigated. We have implemented a tool that automates our method, and use it to model check state-of-the-art DTSs such as P-Store, RAMP, Walter, Jessy, and ROLA.Ope

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects

    Generating Correct-by-Construction Distributed Implementations from Formal Maude Designs

    Get PDF
    Developing a reliable distributed system meeting desired performance requirements is a hard and very labor-intensive task. Formal specification of a system design and formal analysis can yield provably correct designs as well as reliable performance predictions. But there is still a formality gap between verified designs and distributed implementations. We present a correct-by-construction automatic transformation mapping a formal specification of a system design M in Maude to a distributed implementation D(M) with the same safety and liveness properties as M. Two case studies applying this transformation to state-of-the art distributed transaction systems show that high-quality implementations with acceptable performance and meeting performance predictions can be obtained in this way. To the best of our knowledge, this is the first time that formal models of distributed systems analyzed within the same formal framework for both logical and performance properties are automatically transformed into correct-by-construction implementations for which similar performance trends can be shown.Ope
    corecore