
Generating Correct-by-Construction Distributed
Implementations from Formal Maude Designs

Si Liu1, Atul Sandur2, José Meseguer2, Peter Csaba Ölveczky3, and Qi Wang2

1 ETH Zürich, Zürich, Switzerland
2 University of Illinois, Urbana-Champaign, USA

3 University of Oslo, Oslo, Norway

Abstract. Developing a highly reliable distributed system meeting de-
sired performance requirements is at present a hard and very labor-
intensive task. Formal specification of a system design and formal verifi-
cation and analysis can yield provably correct designs as well as reliable
performance predictions. But there is still a formality gap between ver-
ified designs and distributed implementations. We present a correct-by-
construction automatic transformation mapping a verified formal spec-
ification of a system design M in Maude to a distributed implemen-
tation D(M) with the same safety and liveness properties as M . Two
case studies applying this transformation to state-of-the-art distributed
transaction systems show that high-quality implementations with accept-
able performance and meeting performance predictions can be obtained
in this way. To the best of our knowledge, this is the first time that
formal models of distributed systems analyzed within the same formal
framework for both logical and performance properties are automatically
transformed into logically correct-by-construction implementations for
which similar performance trends can be shown.

1 Introduction

Designing and implementing correct high-performance distributed systems is a
complex task. Cloud-based systems, which typically rely on widely distributed
data storage for scalability, availability, and disaster tolerance, have further in-
creased this complexity. For example, the communication needed to maintain
strong consistency across sites may incur unacceptable latencies, so that design-
ers must balance consistency and performance. Both performance and functional
correctness are therefore critical system requirements.

Formal methods have been advocated to develop and analyze high-level mod-
els of distributed system designs. However, today’s distributed systems present
a number of challenges to formal methods: (i) the sheer complexity and het-
erogeneity of such systems requires a flexible and expressive formal framework,
which nevertheless must be simple and intuitive to be usable by system devel-
opers [39]; (ii) the correctness properties that these systems must satisfy can
be quite complex, and there is a desire in industry for automatic verification

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/275572592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 S. Liu et al.

techniques [39]; and (iii) both correctness and performance are, as mentioned,
crucial requirements.

Formal Design and Verification of Distributed Systems in Maude. The
above criteria (i)–(iii) are challenging. One formal framework that has shown
promise in meeting them is Maude [12], which is a high-performance language
and formal framework for executable specification, verification and programming
of concurrent systems based on rewriting logic [35,9,36]. Maude meets challenge
(i) by being based on a simple and intuitive formalism (algebraic equational
specifications define data types and rewrite rules define dynamic behaviors) that
is at the same time general and expressive. Maude also provides a natural model
of concurrent objects, which is ideal for modeling distributed systems. Regarding
challenge (ii), Maude provides a range of automatic model checking methods, in-
cluding reachability analysis and LTL and LTLR temporal logic model checking
[12,3], which allows us to express and analyze complex properties (see, e.g., [31]).
The Maude tool environment also provides theorem proving verification of in-
variants in the InvA tool [41], and of reachability logic properties in Maude’s
reachability logic prover [44]. For challenge (iii), the Maude tool environment
includes the PVeStA [2] statistical model checker, which can be used to statis-
tically predict the performance of a design.

These features have made possible the use of Maude to model and analyze
both the correctness and performance of high-level designs of a wide range of
state-of-the-art distributed systems (see the survey [36]). To cite just one exam-
ple area, Maude has been used to formally model and analyze, often for the first
time, state-of-the-art industrial and academic cloud-based transaction systems
such as Cassandra [20], ZooKeeper [21], Google’s Megastore [5], P-Store [42],
RAMP [4], and Walter [45]; and to design the entirely new system ROLA [28]
(see the survey [8] and [32,27,40,30,29,31,24]). Furthermore, model-based per-
formance predictions using PVeStA have shown good correspondence with ex-
perimental evaluation of implementations of systems such as Cassandra, RAMP,
and Walter [25,26,30].

In this way, one can develop mature designs satisfying given correctness cri-
teria and having good predicted performance. However, this still leaves open the
problem of how to pass from a verified system design in Maude to a correct-by-
construction distributed implementation. This is the problem this paper solves.

From Distributed System Designs to Implementations. Maude provides
TCP/IP sockets as Maude external objects so that it can interact with stan-
dard Maude objects by message passing [12]. Using sockets, a Maude concurrent
object system can be deployed as a distributed system across several machines.
Message passing within a single machine is executed by rewriting; but message-
passing across machines is achieved by Maude TCP/IP socket objects.

Since many different distributed deployments can be chosen for the same
concurrent object system design expressed as a Maude program M , various dis-
tributed implementations can be programmed within Maude by manually trans-
forming the design M into a distributed Maude program D(M) by importing the
SOCKET module [12] and programming the remote message passing communica-



Generating Distributed Implementations from Maude Designs 3

tion through such sockets. This, however, leaves open a formality gap. Suppose
that a given property ϕ has been verified for the system design M . Does ϕ still
hold true for D(M)? Up to now, this formality gap has been filled by developing
a formal model D′(M) of D(M) in Maude and verifying that D′(M) verifies ϕ.
For example, the correctness of both the distributed implementations of the Mo-
bile Maude language, and of the Orc orchestration language have been verified
this way by model checking in, respectively, [12] and [1].

This situation is unsatisfactory because: (i) one has to manually program
D(M), and has to do so for each particular choice of deployment; and (ii) check-
ing the preservation of formal properties when passing from M to D(M) is
required for each M , which defeats the purpose of carrying out the verification
on the simpler model M . The main goal of this paper is to fully automate the
passage from M to D(M) and to prove that M and an abstract model D0(M),
which hides the details of D(M)’s TCP/IP-based network communication, are
stuttering bisimilar [37,34] and therefore satisfy the exact same CTL∗ temporal
logic properties for any formulas not using the “next” operator ©. Therefore,
both safety and liveness properties are preserved by the bisimulation. What a
Maude user provides as input to the automatic M 7→ D(M) transformation is
a three-tuple (M, init , di), where M is the Maude module specifying the given
system’s design, init is an initial state in such a design, and di is a distribu-
tion function, indicating the specific IP address and Maude session4 where each
object in init will be located.

Prototype and Experimental Evaluation. We have developed a Maude pro-
totype that automates the M 7→ D(M) transformation. To evaluate its effective-
ness —as well as the predictive power of the statistical-model-checking-based
performance predictions for a system design M when compared with perfor-
mance measures experimentally obtained for D(M)— we have used two case
studies. In the first one we compare the Maude specification M of the NO WAIT
transaction protocol with its distributed Maude implementation D(M) and with
a state-of-the-art conventional implementation of NO WAIT. In the second case
study we compare the Maude design M of the new distributed transaction sys-
tem ROLA [28] with its first time ever distributed implementation D(M) and
measure its performance.

Main Contributions: (i) the formal definition of the M 7→ D(M) transfor-
mation; (ii) the proof that for any actor-like Maude specification M the system
D0(M) and M are stuttering bisimilar and satisfy the same safety and live-
ness properties; (iii) a Maude prototype automation of the M 7→ D(M) trans-
formation allowing us to generate, deploy and evaluate correct-by-construction
implementations of state-of-the-art system designs, and allowing interaction of
such implementations with foreign objects (see Section 3.3) such as YCSB [14];
(iv) two case studies using state-of-the-art distributed transaction systems eval-
uating the implementations obtained by the M 7→ D(M) transformation with
respect to: (a) the statistical-model-checking-based performance predictions for

4 Several concurrent Maude sessions can be executed on the same machine.



4 S. Liu et al.

M ; and (b) a conventional implementation: our unoptimized prototype D(M)
is only six times slower than a high-performance implementation. To the best of
our knowledge, this is the first time that formal models of distributed systems
analyzed within the same formal framework for both logical and performance
properties are automatically transformed into logically correct-by-construction
implementations for which similar performance trends can be shown.

2 Preliminaries

Rewriting Logic and Maude Maude [12] is a rewriting-logic-based high-performance
executable formal specification language and analysis tool for object-based dis-
tributed systems. Formal analysis methods include: simulation, reachability anal-
ysis, LTL model checking, theorem proving, and, for performance estimation
purposes, statistical model checking with the PVeStA tool [2].

A Maude module specifies a rewrite theory (Σ,E ∪B,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E ∪B) is a membership equational logic theory, with E a set of possibly

conditional equations and membership axioms, and B a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms B. (Σ,E ∪ B) specifies the sys-
tem’s states as members of the initial algebra TΣ/E∪B .

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

We summarize the syntax of Maude and refer to [12] for more details. Opera-
tors are introduced with the op keyword: op f : s1 . . . sn -> s. They can have
user-definable syntax, with underbars ‘_’ marking the argument positions, and
equational attributes, such as assoc and comm, stating that the operator is as-
sociative and commutative. Equations and rewrite rules are introduced with,
respectively, keywords eq, or ceq for conditional equations, and rl and crl.
The mathematical variables in such statements are declared with the keywords
var and vars, or can have the form var:sort and be introduced on the fly.
Maude also provides standard parameterized data types (sets, maps, etc.) that
can be instantiated (and renamed).

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C of objects with attributes att1 to attn of sorts s1 to sn. An object instance
of class C is represented as a term < o : C | att1 : val1, . . . , attn : valn >, where
o, of sort Oid, is the object’s identifier, and where val1 to valn are the current
values of the attributes att1 to attn. A message is a term of sort Msg. A system
state is modeled as a term of the sort Configuration, and has the structure of
a multiset made up of objects and messages.

The dynamic behavior of a system is axiomatized by specifying its transition
patterns by rewrite rules. For example, the rule

rl [l] : m(O,w)



Generating Distributed Implementations from Maude Designs 5

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines a family of transitions in which a message m(O, w) is read and consumed
by an object O of class C, whose attribute a1 is changed to x + w, and a new
message m’(O’,x) is generated. Attributes whose values do not change and do
not affect the next state, such as a3 and a2, need not be mentioned in a rule.

Example 1. The following example shows parts of a Maude specification of a
very simple partitioned database system, where each client performs a sequence
of read operations on data items. A table assigns to each data item K the DB

object that stores the data item. When a client wants to read the value of a data
item K, it sends a read(K) message to the DB object storing K (rule getValue).
This DB object replies with a value(K,V) message (rule replyRead). When the
client reads this response, it stores the pair (K,V) in its log (rule readValue).
We just show snippets of the Maude code, and omit, e.g., the declarations of the
data types and messages involved:

class Client | operations : OperationList, log : Log .

class DB | database : Map{Key,Value} .

op table : -> Map{Key,Oid} .

vars O O’ : Oid . var K : Key . var OL : OperationList .

var V : Value . var B : Map{Key,Oid} . var LOG : Log .

rl [getValue] :

< O : Client | operations : read(K) :: OL >

=> < O : Client | operations : OL >

(to table[K] from O : read(K)) .

rl [replyRead] :

(to O from O’ : read(K)) < O : DB | database : B >

=> < O : DB | > (to O’ from O : value(K,B[K])) .

rl [readValue] :

(to O from O’ : value(K,V)) < O : Client | log : LOG >

=> < O : Client | log : LOG ++ (K,V) > .

The following shows an initial configuration with two clients and two database
partitions, each storing two data items:

ops c1 c2 db1 db2 : -> Oid .

ops k1 k2 k3 k4 : -> Key .

op init : -> Configuration .

eq init =

< c1 : Client | operations : read(k3) :: read(k2), log : empty >

< c2 : Client | operations : read(k4) :: read(k3), log : empty >



6 S. Liu et al.

< db1 : DB | database : k1 |-> 54, k2 |-> 8 >

< db2 : DB | database : k3 |-> 9, k4 |-> 7 > .

eq table = k1 |-> db1, k2 |-> db1, k3 |-> db2, k4 |-> db2 .

Sockets in Maude. Maude’s erewrite command supports rewriting with exter-
nal objects (that do not reside in the configuration) when the “portal” object <>
is present in the configuration. Objects in a Maude process, called here a session,
can communicate with so-called external objects in the same session by message
passing. In particular, they can communicate with Maude’s built-in socket man-
ager object, with object name socketManager, that supports establishing com-
munication and communicating through TCP sockets with other remote Maude
objects in other Maude sessions, as well as with remote foreign objects (see Sec-
tion 3.3) in other processes. Some of the messages defining the interface between
a Maude process and Maude’s socket manager are the following:

A message createServerTcpSocket(socketManager,myOid, port, ...)
asks Maude’s socket manager to create a server socket. If the socket is created
successfully, Maude’s socket manager sends the message createdSocket(myOid,
socketManager,socketName), where socketName is the name of the created
socket. The message send(socketName,myOid,string) asks Maude to send string
through the socket socketName. The message receive(socketName, myOid)
solicits data through a socket. When some data (string) is received through a
socket, the socket manager sends the message received(myOid,socketName,string).

Stuttering Bisimulations. For preservation of temporal logic properties between
a Maude design of a concurrent system and its automatic implementation as
a distributed system we will use the notion of a stuttering bisimulation map
between Kripke structures. Recall that a Kripke structure A on a set AP of
atomic propositions is a 4-tuple A = (A,→A, a0, LA) where A is a set of states,
→A⊆ A × A is the total transition relation on states (total means that ∀a ∈
A ∃a′ ∈ A s.t. a →A a′), a0 ∈ A is the initial state, and LA, called the labeling
function, is a function LA : A → P(AP ) assigning to each state a ∈ A the
set of atomic state predicates LA(a) true in state a. A path π in A is function
π : N→ A such that π(0) = a0 and ∀n ∈ N π(n)→A π(n+ 1).

Given Kripke structures A and B, intuitively, a bisimulation is a proposition-
preserving correspondence between states of A and states of B such that any
action of A can be replicated by an action of B, and vice versa. In this paper,
B will be a concurrent system’s formal design in Maude, and A will be its
distributed Maude implementation. The implementation A will be correct by
construction if we can prove that the design B and its implementation A are
bisimilar. Since what is an atomic transition in a design may be realized by a
sequence of transitions in its implementation, our bisimulation needs to be a
stuttering bisimulation map in the following sense:

Definition 1. [37] Given Kripke structures A = (A,→A, a0LA) and B = (B,→B
, b0, LB), a stuttering bisimulation map, denoted h : A → B, is a function



Generating Distributed Implementations from Maude Designs 7

h : A → B such that: (1) given any path π in A there is a path ρ in B and
a strictly monotonic function κ : N → N such that: (i) for each n ∈ N and
each i, κ(n) ≤ i < κ(n + 1), (ii) h(π(κ(n))) = h(π(κ(i))) = ρ(n), and (iii)
LA(π(κ(n))) = LA(π(i)) = LB(ρ(n)). And (2) given any path ρ in B there is a
path π in A and a strictly monotonic function κ : N → N satisfying the above
conditions (i)–(iii).

The states π(i), κ(n) ≤ i < κ(n+ 1), can be called the “stuttering states” of
A bisimulated by ρ(n) in B. The key property of a stuttering bisimulation map
h : A → B is that all formulas ϕ ∈ CTL∗ \© satisfied by B are also satisfied by
A, and vice versa, where CTL∗ \ © denotes the subset of the CTL∗ temporal
logic not involving the “next” operator © (for more on CTL∗, its LTL sublogic,
and the satisfaction relation A |= ϕ between a Kripke structure and a CTL∗

formula ϕ see [11]). That is, we have:

Theorem 1. [37], Thm. 3 (Implementation Correctness). If h : A → B is a
stuttering bisimulation map, for each ϕ ∈ CTL∗ \© we have: B |= ϕ ⇔ A |= ϕ.

Definition 1 is conceptually appealing but hard to check directly. As explained
in [37], a more easily checkable characterization by Manolios [34] can be adapted
to our setting as the following theorem:

Theorem 2. (Adapted from [34,37]). If all states in Kripke structures A and B
are reachable from their corresponding initial states a0 and b0, then a function
h : A→ B such that h(a0) = b0 and LA = LB◦h is a stuttering bisimulation map
h : A → B iff there is a well-founded order (W,>) and a function µ : A×B →W
such that whenever h(a) = b and a →A a′, then either (i) there is a b′ ∈ B
s.t. b →A b′ and h(a′) = b′, or (ii) h(a′) = b and µ(a, b) > µ(a′, b), and, in
addition, whenever h(a) = b and b→B b′, there is a finite sequence of transitions
a→A a1 . . . an →A an+1, with n ≥ 0, such that for 1 ≤ i < n+ 1 h(ai) = b, and
h(an+1) = b′.

A concurrent system design is formally specified in Maude as a rewrite theory.
For temporal logic reasoning we can associate to a rewrite theory R = (Σ,E,R)
and an initial state init ∈ TΣ/E a corresponding Kripke structure K(R, init) =
(Reach(init),−→•R/E , init , L) as follows [12]: (i) Reach(init) is the set of all states

[u] ∈ TΣ/E reachable from init , i.e., such that [t] −→∗R/E [u], where −→R/E

denotes the relation of rewriting E-equivalence classes with the rules R modulo
E; (ii) −→•R/E is the (totalization of) the one-step rewrite relation −→R/E ; and

(iii) L maps each reachable state [u] to the set L([u]) = {p ∈ AP | u |= p =E

true}, where =E denotes equality modulo E and we assume that Σ contains
a sort whose ground terms are the atomic propositions AP , and E contains
equations defining the satisfaction relation u |= p between states and atomic
propositions as a Boolean-valued function |=.

3 The D Transformation

We define the transformation M 7→ D(M), mapping a Maude formal design
M of a distributed system to a distributed Maude program D(M) deployed on



8 S. Liu et al.

different machines. We allow multiple concurrent Maude sessions to run on the
same machine.

The transformation D takes as input:

– an object-oriented Maude module M defining an actor system as explained
below;

– an initial state init of sort Configuration, which is a set of objects

< o1 : C1 | atts1 > ... < on : Cn | attsn >

in TΣ/E,Configuration, with distinct object names oi, where TΣ/E,Configuration
denotes the set of configuration states for M ;

– a distribution information function

di : {o1, . . . , on} → String× N

assigning to each “top-level” object5 oj in init a pair (ip, i), where ip is
the IP address (given as a string) of the machine in which the object should
reside, and i denotes the ith Maude session on that machine.

The transformation D then gives us:

– A Maude program MDdi
that runs on each distributed Maude session; and

– an initial state initDdi
(ip, i) for each Maude session (ip, i).

The transformation D is then a function

λM ∈ OModule . λinit ∈ TΣ/E,Configuration .
λdi ∈ [oids(init)→ String× N)] . D(M, init, di) ∈ OModule.

Notation. We write MDdi
for D(M, init, di).

The object-oriented module M should model an “actor” system, so that its
rewrite rules must have the form

(to o from o’ : mc) < o :C | ... > => < o :C | ... > msgs [if ...] (†)

or

< o :C | ... > => < o :C | ... > msgs [if ...] (‡)

where msgs is a term of sort Configuration which, applying the equations in
the module, reduces to a multiset of messages

(to o1 from oθ : mc1) ... (to ok from oθ : mck)

for k ≥ 0, where θ is the substitution used when applying the rule. In such a
message, mci is the message content (or payload) of the message being sent to
the object named oi from the object named oθ. Although no “top-level” objects
are created or deleted by the (†), (‡) rules, object-creating rules can also be
added.6

5 Such “top-level” objects may be hierarchical; i.e., they may have attributes whose
values contain other objects or entire configurations. Such “inner” objects often
represent structured data rather than computational actors.

6 Our framework also allows us to have rules that create new “top-level” objects in
their right-hand sides. A new “child” object will run in the same Maude session as



Generating Distributed Implementations from Maude Designs 9

3.1 The M 7→ MDdi Transformation

The main idea for defining the distributed Maude program MDdi
is to add mid-

dleware for communication between Maude sessions and with external objects.
This is done by adding to each Maude session a communication mediator object
that takes care of communication with objects that are not local, as illustrated
in Fig. 1.

A

B

C
E

F

D

B

A
C

F

E
D

D-transformation

Mediator Mediator Mediator

Fig. 1. Visualization of the D Transformation

This mediator object opens and maintains sockets for communication be-
tween pairs of objects; there is in general one socket for each pair of objects
that communicate remotely (across machine/session boundaries). Objects in the
same Maude session communicate with each other without going through the
mediator object.

The only modification of the rewrite rules in M is that a message addressed
to a remote object is “redirected” to the local mediator, which:

– establishes the required socket between the pair of objects if not already
established;

– transforms the original message into a string with an “end-of-message” marker;
and

– sends the resulting string through the appropriate socket.

For receiving, the mediator object receives external messages through sockets
associated to “its” objects. Since TCP sockets do not preserve message bound-
aries, the mediator has to buffer the messages received in each socket. When

its parent. Furthermore, the name of the child object must be chosen such that the
di function can determine its Maude session. This can, e.g., be achieved by letting
the child’s identifier be a string of which the parent’s is a prefix.



10 S. Liu et al.

the buffered string contains the “end-of-message” string, the mediator extracts
the string representing the message, transforms it to a message, and inserts the
message (having a local addressee) in the local configuration.

The distributed program MDdi
consists of:

– A constant di of sort Map{Oid,Pair{String,Nat}} which specifies di in
Maude as a map from Oid to Pair{String,Nat} using an equation eq di

= ....
– The module filter(M), which transforms M with only a minor change in its

rules as described below.
– Declarations and rewrite rules defining the mediator objects and their be-

haviors (which import the SOCKET module).

Example 2. If the objects in state init in Example 1 are executed on different
machines, say, ip1, ip2, ip3, and ip4, respectively, then the map di can be given
in Maude as follows:

eq di = c1 |-> < "ip1" ; 1 >, c2 |-> < "ip2" ; 1 >,

db1 |-> < "ip3" ; 1 >, db2 |-> < "ip4" ; 1 > .

The module filter(M). The only change made by filter(M) to the rewrite rules
in M is that any message (to o′ from o : mc) generated by a rule in M is
replaced by a message

(to di(o’) transfer mc from o to o’)

if o′ and o reside in different Maude sessions. Formally, this is done by adding a
subsort declaration

subsort Pair{String,Nat} < Oid .

stating that a < ip ; session > pair is an object identifier (for the mediator ob-
jects), adding a message constructor

op to_transfer_from_to_ : Oid MsgContent Oid Oid -> Msg [ctor] .

and changing each rewrite rule in M of the form (†) to

(to o from o’ : mc) < o : C | ... > => < o : C | ... > filter(msgs) [if ...]

(and similar with rewrite rules of the form (‡)), where filter redirects the
messages going to remote objects to the mediator and leaves the other (internal)
messages unchanged7:

op filter : Configuration -> Configuration .

eq filter(none) = none .

eq filter((to O from O’ : MC) CONF)

= if di[O] =/= di[O’] then

(to di[O’] transfer MC from O’ to O) filter(CONF)

else (to O from O’ : MC) filter(CONF) fi .

7 We do not show variable declarations in the rest of this paper, but follow the con-
vention that variables are written in (all) capital letters.



Generating Distributed Implementations from Maude Designs 11

Specifying the Mediator Each mediator is defined as an object instance of the
class

class Med | sockets : Sockets,

contacts : Contacts,

bufferedMsgs : Configuration .

where:

– sockets values are terms [socket1, str1] ... [socketk, strk], denoting that
the string str j has been received through socket socketj (and then buffered)
since the last time a message was extracted from this buffer;

– contacts is a set of triples < localObjId,socket,remoteObjId >, denoting the
socket used to communicate between two objects; and

– bufferedMsgs contains the outgoing messages when the appropriate sockets
have not yet been established.

We refer to github.com/siliunobi/d-transformation for a complete exe-
cutable specification of the mediator object, where most of the rewrite rules deal
with establishing Maude sockets along the lines explained in [12, Chapter 11].
In this paper we just show the following three rewrite rules for the mediator.

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | contacts : CONTACTS ; < O’, SOCKET, O’’ > >

=>

< O : Med | >

send(SOCKET,O’,

msg2string(to O’’ from O’ : MC) + "[msep]") .

In this rule, the mediator is tasked with transferring the message content MC

from the local object O’ to the remote object O’’. The rule uses Maude’s built-
in message send to send the message through the socket SOCKET, which has
already been established between O’ and O’’. Since sockets transport strings,
the function msg2string is used to transform the message into a string; the
end-of-message separator "[msep]" is then appended to the string.

The following rule shows the case when a configuration receives a message
received(S, SKT, DATA). This message denotes that the string DATA has been
received through socket SKT. The mediator object just adds this string DATA to
the string STR that it has already buffered for socket SKT:

rl [receiveData] :

received(S, SKT, DATA)

< O : Med | sockets : SKTS [SKT, STR] >

=>

< O : Med | sockets : SKTS [SKT, STR + DATA] >

receive(SKT, S) .



12 S. Liu et al.

Finally, when enough data has been received through a socket SKT so that a
message MSG can be extracted from it, the message is extracted from the string,
converted into a message which is added to the configuration to be consumed
by a local object, and the remaining string (after the message and the end-of-
message separator have been removed) is buffered with SKT:

crl [extractRemoteMsg] :

< O : Med | sockets : SKTS [SKT,STR] >

=>

< O : Med | sockets : SKTS [SKT,

substr(STR,find(STR, "[msep]", 0) + 6,length(STR))] >

MSG

if MSG := string2msg(substr(STR,0,find(STR,"[msep]",0))) .

Communication between objects in the same Maude session takes place with-
out going through sockets or mediators. MDdi

also adds functions string2msg and
msg2string, converting between messages and strings and satisfying string2msg(msg2string(M))

= M.

The Module MDdi
. To summarize, the distributed Maude program MDdi

exe-
cuted at each local host consists of the definition of di and the union of the
module filter(M) and the mediator specification:

mod MDdi is

including filter(M) + MEDIATOR .

eq di = ... .

endm

3.2 Distributed Initial States

The initial state initDdi
(ip, n) at Maude session (ip, n) is a configuration con-

taining:

– the objects in init mapped to (ip, n) by di;
– one mediator object

< < ip ;n > : Med | sockets : empty, contacts : empty,

bufferedMsgs : none >

– one occurrence of the built-in “portal” object <> denoting that we rewrite
with external objects, such as Maude’s built-in socket manager; and

– one message

createServerTcpSocket(socketManager, o, port#, 5)

for each top-level (non-mediator) object o in the configuration.



Generating Distributed Implementations from Maude Designs 13

3.3 Adding Foreign Objects

A distributed Maude object-based system can be easily extended to interact
with objects foreign to it with no changes to the existing rewrite rules: only
the new messages and rules defining the interaction with new foreign objects
—databases, web sites, display devices, and so on— need to be specified. This
is easy to achieve thanks to the message-passing abstraction: an object of some
class needs no information at all about the internal representation of objects
of other classes which with it communicates. Only the interfaces specifying the
messages are needed.

Within Maude itself, two kinds of objects are supported: (i) standard Maude
objects, which are terms in an object-based rewrite theory, and (ii) external
Maude objects. In this paper it suffices to focus on socket external Maude objects
already described in Section 2. If the only objects involved in our distributed
Maude system are standard Maude objects, only socket external Maude objects,
opened and closed by the communication mediator objects described in Section
3.1, are needed. But how can such a distributed Maude system communicate
with foreign objects, that is, objects such as a display or a database completely
outside Maude? The simple answer has been already hinted at above. Suppose
Cl1 is a class of Maude objects that needs to communicate with, say, database
foreign objects. All we need are three things: (a) a signature of messages sent
by objects in Cl1 to such foreign objects and by foreign objects to objects in
Cl1; (b) rewrite rules for the objects of class Cl1 specifying how messages to
foreign objects are generated and how objects of class Cl1 react to messages
sent by foreign objects; and (c) a wrapper encapsulating a foreign object that
can transform the string representation of a message from a Cl1 object into an
internal command to the foreign object, and a reply from the foreign object into
the string representation of a message to a Cl1 object. Once items (a)—(c) are
specified, socket-based communication can proceed as before: messages repre-
sented as strings will travel though the sockets communicating Maude standard
objects with foreign objects and vice versa. As explained in Section 5, in this
paper we have used some of the steps (a)–(c) to allow communication of a YCSB
[14] foreign object with standard Maude objects to carry out system evaluations
in the two case studies we present. The same methodology can be used to allow
communication of distributed Maude objects with any foreign objects. Further-
more, the D transformation explained in Section 3.4 can be easily extended to
initial configurations where some of their objects are foreign objects.

3.4 Deployment

We have built a simple Python-based prototype that automates the process of
deploying and running the distributed Maude model on distributed machines.
The tool takes as input the IP addresses of the distributed machines and the
number of Maude sessions on each machine.

We have run distributed Maude deployments to perform large-scale experi-
ments on distributed transaction systems. To experiment with realistic work-
loads, we have connected our distributed implementation to the well-known



14 S. Liu et al.

YCSB workload generator [14] as explained in Section 3.3. Our deployment tool
also invokes the workload generator (e.g., YCSB) to initialize and to load data
into the database, and then invokes the workload generator to generate transac-
tions for the different Maude instances to execute.

To measure the performance of our distributed implementation, we have
added a “log” attribute to each mediator object that records relevant data during
the distributed execution. A Python script then inspects and aggregates these
logs after execution to compute the overall performance metric of the system.

4 Correctness Preservation

Our goal is to obtain a distributed implementation of a Maude specification that
is correct by construction: If the original Maude model M , with intial state init,
satisfies a CTL∗ temporal logic property φ that does not contain the “next”
operator ©, then φ should also hold in the distributed implementation MDdi

when started with corresponding distributed initial state(s), and vice versa.
Since MDdi

uses Maude external TCP/IP socket objects for communication
between different Maude sessions, a full proof of correctness of the M 7→ MDdi

transformation would require modeling the TCP/IP protocol and its associated
network failure model. This is possible, but is beyond the scope of this paper.
Instead, we adopt here the approach followed in other proofs of correctness
of distributed systems obtained by transformation from formal specifications,
e.g., [47,43], where network communication is delegated to a trusted shim and
is abstracted away in correctness proofs. In our case, the Maude TCP/IP socket
objects invoked by the communication mediator objects play the role of such a
trusted shim.

Therefore, we present below a proof of correctness, in the form of a stuttering
bisimulation, which uses an intermediate formal model D0(M, init, di) which
abstracts away the network communication details by providing a high-level
abstraction of it.

4.1 The Model D0(M, init, di)

The rewrite theory D0(M, init, di) is essentially as MDdi
, except that it ab-

stracts away the establishment of the appropriate sockets, and models the effect
of socket communication in rewriting logic at a higher level of abstraction. The
model D0(M, init, di) therefore simplifies MDdi

as follows.
Concerning the mediator class:

– Since we no longer have explicit sockets, the contacts attribute of Med is
no longer needed.

– Since we assume that the sockets have been successfully established, the
attribute bufferedMsgs, used to buffer outgoing messages that could not
yet be transmitted since the appropriate socket was not established, is no
longer needed.



Generating Distributed Implementations from Maude Designs 15

– Since we abstract away the fact that TCP sockets do not preserve message
boundaries, we do not need to buffer messages at the receiving end, and
therefore the attribute sockets is no longer needed.

The mediator class therefore no longer needs any attributes, and is declared as
follows in D0(M, init, di):

class Med .

The rewrite rules in D0(M, init, di) differ from the rewrite rules in MDdi
as

follows:

– Since we abstract from the establishment of sockets, the rewrite rules in
MDdi

dealing with this issue (not shown in this paper) are omitted from
D0(M, init, di).

– The rule sendRemote in MDdi
is replaced by the rule

rl [sendRemote] :

(to O transfer MC from O’ to O’’)

< O : Med | >

=>

< O : Med | >

transfer(di[O’’], O, msg2string(to O’’ from O’ : MC)) .

op transfer : Oid Oid String -> Msg [ctor] .

where a “transfer” message models socket communication.
– When a mediator receives such a transfer message (modeling socket commu-

nication), it transforms the received string into a message, which is then re-
leased into the configuration. The rewrite rules receiveData and extractRemoteMsg

inMDdi
are therefore replaced by the following rewrite rule inD0(M, init, di):

crl [receiveRemoteMsg] :

transfer(O, O’, STRING)

< O : Med | >

=>

< O : Med | >

string2msg(STRING) .

Initial States The initial state in D0(M, init, di) corresponding to the state
init in M is just init with an additional mediator object < < ip ;n > : Med | >

for each (ip, n) ∈ image(di). We call this initial state initD0 . (Compared to
the distributed initial states in MDdi

, initD0 is the multiset union of all those
distributed states, minus <>, where the Med objects no longer have attributes,
and without the messages used to establish sockets.)

It is worth remarking that, although the distributed state is represented as
a single flat configuration of objects in initD0 , “direct” message communica-
tion between two objects assigned to different Maude sessions in di cannot take
place due to the “filtering” of generated messages in MDdi

(and hence also in
D0(M, init, di)).



16 S. Liu et al.

4.2 D0(M, init, di) and M are Stuttering Bisimilar

We show that the Kripke structuresK(D0(M, init, di), initD0
) andK(M, init)

are stuttering bisimilar for the labeling functions L in K(M, init) and L ◦ h in
K(D0(M, init, di), initD0

).
We define the map h : Reach(initD0

)→ Reach(init) as follows:

eq h(none) = none .

eq h(< O : Med | > CONF) = h(CONF) .

ceq h(< O : C | > CONF) = < O : C | > h(CONF) if C =/= Med .

eq h((to O transfer MC from O’ to O’’) CONF)

= (to O’’ from O’ : MC) h(CONF) .

eq h((transfer(O,O’,STRING)) CONF)

= string2msg(STRING) h(CONF) .

eq h((to O from O’ : MC) CONF) = (to O from O’ : MC) h(CONF) .

That is, h maps a configuration in D0(M, init, di) to a similar configuration in
M with the following modifications: (i) the mediator objects are forgotten, and
(ii) the three intermediate messages involved in transferring a message content
mc from o to a remote o′ are all mapped to the message (to o′ from o : mc).

Theorem 3. h is a stuttering bisimulation map

h : K(D0(M, init, di), initD0
)→ K(M, init)

with corresponding labeling functions L ◦ h and L.

Proof. According to Theorem 2, h is such a stuttering bisimulation map if
there is a well-founded domain (W,>) and a function µ : Reach(initD0

) ×
Reach(init)→W so that:

1. h(initD0) = init.
2. If h(t) = u and t −→ t′ then either u −→ u′ for some u′ = h(t′), or h(t′) = u

and µ(t, u) > µ(t′, u).
3. If h(t) = u and u −→ u′, then there is a sequence of transitions t −→ t1 −→
· · · −→ tn, with n ≥ 1, such that h(tn) = u′ and h(t1) = · · · = h(tn−1) = u.

4. h(t) and t satisfy the same atomic propositions, which holds since L ◦ h is
K(D0(M, init, di), initD0

)’s labeling function.

(In this proof, terms t, t′, t1, . . . and rewrites between such terms denote states
and transitions in K(D0(M, init, di), initD0), and the u’s denote states and
transitions in K(M, init).)
1. As explained in Section 4.1, the initial state initD0

just adds a number of
Med objects to the initial state init of M . Since h forgets all Med objects, we
have the desired h(initD0

) = init.
2. Assume that t −→ t′ is a rewrite in D0(M, init, di) and h(t) = u.

– If the rule used in the rewrite above is

m < o :C | atts > => < o :C | atts’ > filter(msgs) [if ...]



Generating Distributed Implementations from Maude Designs 17

(the case with rules (‡) is easier), then there is a substitution θ such that
t = c0 mθ (< o :C | atts >)θ and t′ = c0 (< o :C | atts ′ >)θ) filter(msgsθ).
Since h(filter(msgsθ)) = msgsθ, and h(t) = h(c0) mθ (< o :C | atts >)θ, it
follows that h(t) −→ h(t′) with the rule

m < o :C | atts > => < o :C | atts’ > msgs [if ...].

– For the additional rewrite rules in D0(M, init, di), we use (MsgConf , >mul
) as the well-founded order, where MsgConf denotes finite multisets of
D0(M, init, di)-messages, and >mul is the multiset extension induced by the
order > given by (to o transfer mc from o′ to o′′) > transfer(o′′′,o,
msg2string(to o′′ from o′ : mc)) > (to o′′ from o′ : mc). We define
µ(t, u) to be the multisets of messages in t.
Since the rules sendRemote and receiveRemoteMsg only replace a message
with the corresponding h-equivalent and>-decreasing message, t −→ t′ using
one of these rules means that h(t) = h(t′) and µ(t, u) >mul µ(t′, u) (for any
u).

3. Any step in M can be simulated by a sequence of steps in D0(M, init, di).
Suppose that u −→ u′ in M and h(t) = u. Then either a rule of the form (†),
say,

m < o :C | atts > => < o :C | atts’ > msgs [if ...],

or (‡) is used. We show the case for rule (†); the (‡) case is trivial. For a (†)
rule, u must have the form u = h(c0) h(m′) (< o : C | atts >)θ with h(m′) = mθ
and u′ = h(c0) (< o : C | atts ′ >)θ msgsθ. We can distinguish two cases: (i)
if m′ = mθ then t = c0 mθ (< o : C | atts >)θ and can be rewritten to t′ =
c0 (< o : C | atts ′ >)θ filter(msgsθ), so that h(t′) = u′, as desired. Otherwise,
mθ must be of the form (to b from a : x), with oθ = b, and m′ is either (i)
(to di(a) transfer x from a to b), or (ii) transfer(di(b),di(a), msg2string(to

b from a : x)). We do case (i) and leave case (ii) (requiring fewer steps) to the
reader. The c0 has the form c0 = < di(a) : Med | > < di(b) : Med | > c′0 and we have
rewrites t −→ t1 = < di(a) : Med | > transfer(di(b), di(a), msg2string(to b from a

: x)) < di(b) : Med | > < b :C | attsθ > c′0 −→ t2 = < di(a) : Med | > (to b from a : x)

< di(b) : Med | > < b :C | attsθ > c′0 −→ t3 = < di(a) : Med | > < di(b) : Med | > < b :C |

atts ′θ > filter(msgsθ) c′0. But then h(t) = h(t1) = h(t2) = t, and h(t3) = u′, as
desired.

The main result immediately follows from Theorems 1 and 3:

Theorem 4. Given a rewrite theory M specifying a distributed system and an
initial state init as described in Section 3, a distribution information function
di mapping the top-level objects in init to different machines/Maude sessions,
a labeling function L over a set AP of atomic propositions, and a CTL∗ formula
ϕ over AP not containing the “next” operator, then

K(M, init) |= ϕ if and only if K(D0(M, init, di), initD0) |= ϕ

for the labeling function L ◦ h in K(D0(M, init, di), initD0
).



18 S. Liu et al.

5 Prototype and Experiments

We have implemented, in around 300 LOC, a prototype of the D transforma-
tion that automatically transforms a Maude model of a distributed system into
a distributed Maude implementation. We have applied our prototype to the
Maude specification of: (i) a well-known lock-based distributed transaction pro-
tocol which has been implemented in C++ and evaluated in [18]; and (ii) the
ROLA transaction system design. ROLA [28] is a new design with attractive
features whose correctness and performance have been analyzed using Maude
and PVeStA, but which has never been implemented. Using our prototype and
the Maude specification of ROLA we obtain the first distributed implementation
of ROLA for free.

We have subjected our two distributed Maude implementations so obtained
to realistic workloads generated by YCSB to answer to the following questions:

Q1: Are the performance evaluations obtained for the distributed Maude im-
plementations consistent with the performance predictions obtained by sta-
tistical model checking for the original Maude designs? If a conventional
distributed implementation of the design is also available, is its performance
consistent with the distributed Maude one and with the model-based pre-
dictions?

Q2: How does the performance of a distributed Maude implementation D(M)
automatically generated by the unoptimized prototype transformation D
from a Maude design M compare with that of an available state-of-the-art
distributed implementation in C++ of such a design?

Note that answers to Q1 cannot take the form of an exact or approximate agree-
ment between the performance values predicted by statistical model checking a
Maude model and the values measured in an experimental evaluation. This is
impossible because: (i) measured values depend on the experimental platform
used; (ii) the probability distributions used in statistical model checking are only
approximations of the expected behavior; and (iii) the sizes (e.g., number of ob-
jects) of initial states used in statistical model checking and in experimental
evaluations are typically quite different, due to feasibility restrictions placed by
statistical model checking.

For the above reasons (i)-(iii), the consistency to be expected between the
performance predicted by statistical model checking a model and those obtained
by experimentally evaluating an implementation is not an agreement between
predicted and measured values, but between predicted and measured trends. For
example, if throughput increases as a function of the proportion of read and
write transactions, then consistency means that it should do so along curves
that are similar up to some change of scale.

5.1 Experimental Setup

Implementation-Based Evaluation We have evaluated the two case studies using
the Yahoo! Cloud Serving Benchmark (YCSB) [14], which is the open standard



Generating Distributed Implementations from Maude Designs 19

for comparative performance evaluation of data stores. We used the built-in C++
implementation of YCSB in [18] in our first case study. For ROLA, we used a
variant of the original Java implementation of YCSB adapted to transaction
systems [4]. We deployed the two case studies on a cluster of d430 Emulab
machines [46], each with two 2.4 GHz 8-Core Intel Xeon processors and 64 GB
RAM. The ping time between machines is approximately 0.13 ms. We also set
the same system and workload configuration. In both cases we considered 5
partitions (of the entire database) on 5 machines, and all client processes split
across another 5 separate machines; we considered the same mixture of read-
only, write-only, and read-write transactions, with each transaction accessing up
to 8 keys; and we used Zipfian distribution for key accesses with the parametric
skew factor theta.

Statistical Model Checking (SMC) By running Monte-Carlo simulations from a
given initial state, SMC verifies a property (or estimates the expected value of
an expression) up to a user-specified level of confidence. We probabilistically
generated initial states so that each PVeStA simulation starts from a different
initial state. To mimic the real-world network environment, we used the lognor-
mal distribution for message delays [6]. We used 10 machines of the above type
to perform statistical model checking with PVeStA. The confidence level for
all our statistical experiments is 95%.

Standard Model Checking We integrated our Maude models into the CAT frame-
work [31] for model checking consistency properties of distributed transaction
systems. The analysis was performed with exhaustively generated initial states
with a size bound.

Trusted Code Base Our trusted code base includes the Maude implementation
(including the implementation of TCP/IP external socket objects) as well as
the Python-based tool used for deploying and initializing the D-transformed
distributed Maude system.

5.2 Lock-Based Distributed Transactions

This case study considers the protocol NO WAIT implemented in the Deneva
framework [18] using C++. NO WAIT is a strict two-phase locking (strict 2PL)-
based distributed transaction system with two-phase commit (2PC) as its atomic
commitment protocol.

We formally specified NO WAIT in Maude, and then automatically (D-)
transformed the Maude specification to its corresponding distributed Maude
implementation. We used the C++ implementation in [18] in our experiments
with NO WAIT in [18]. Our Maude model of NO WAIT is around 600 LOC,
whereas the C++ implementation in [18] has approximately 12K LOC.

We performed two sets of experiments (Lock A and Lock B in Fig. 2), focus-
ing on the effect of varying amounts of contention in the system. For each set
of experiments, we plot the experimental results of statistical model checking



20 S. Liu et al.

of our Maude model, and of measurements of the distributed Maude and C++
implementations.

In Lock A we vary the contention by tuning the skew theta, and compare two
workloads with 50% and 100% update transactions, respectively. In Lock B we
analyze the throughput as a function of the percentage of read-only transactions
with skew theta = 0.5, and focus on the impact of transaction sizes (i.e., number
of operations in a transaction). Regarding Q1, all three plots in each experiment
show similar trends for the model- and implementation-based evaluations. That
is, our distributed Maude implementation-based evaluation not only confirms the
statistical predictions, but also agrees with the state-of-the-art implementation-
based results.

Regarding Q2, our correct-by-construction lock-based distributed transaction
system achieves lower peak throughput, but only by a factor of 6, than the
corresponding C++ implementation. Some reasons for this lower performance
are: (i) the M 7→ D(M) transformation is an unoptimized prototype; instead,
the C++ implementation of NO WAIT is optimized for high performance (e.g.,
the socket library nanomsg provides a fast and scalable networking layer); and
(ii) the M 7→ D(M) transformation allows adding any benchmarking tool as a
foreign object, wich is very flexible but adds an extra layer of communication;
instead, in the C++ implementation YCSB and the protocol clients are directly
integrated.

Model Checking Consistency Properties. We have used the tool CAT [31] to
model check our Maude model of NO WAIT against 6 consistency properties
(read committed, read atomicity, cursor stability, update atomicity, snapshot iso-
lation, and serializability), without finding a violation of any of them. Under
assumption that our trusted code base executes correctly, Theorem 4 ensures
that our distributed Maude implementation of NO WAIT satisfies the same con-
sistency properties for the corresponding initial states.

5.3 The ROLA Transaction System

ROLA [28] is a recent distributed transaction protocol design that guarantees
read atomicity (RA) and prevents lost updates (PLU). In [28], ROLA was for-
malized in Maude, model checked for the above consistency properties, and sta-
tistical model checking performance estimation showed that ROLA outperforms
well-known distributed transaction system designs guaranteeing RA and PLU.
However, up to now there was no distributed implementation of ROLA. Us-
ing our tool and the Maude specification of ROLA in [28] (which consists of
approximately 850 LOC), we obtain such a correct-by-construction distributed
implementation for free.

We have performed statistical model checking of the Maude specification, and
have run our distributed Maude implementation on YCSB-generated workloads,
on two groups of experiments (see Fig. 3). In ROLA A we increase the amount of
reads, and compare throughput with various partitions of the entire database (5
partitions against 3 partitions). In ROLA B we plot throughput as a function of



Generating Distributed Implementations from Maude Designs 21

 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9Th
ro

ug
hp

ut
 (t

xn
/ti

m
e 

un
it)

Skew Factor (Theta)

Statistical Model Checking - Lock_A

50% Updates
100% Updates

 0

 1

 2

 3

 4

 5

 0  25  50  75  100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e 

un
it)

Percentage Reads

Statistical Model Checking - Lock_B

Txn_size=4
Txn_size=8

 4

 5

 6

 7

 8

 9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Th
ro

ug
hp

ut
 (1

03  
tx

n/
s)

Skew Factor (Theta)

Distributed Maude Implementation - Lock_A

50% Updates
100% Updates

 0

 2

 4

 6

 8

 10

 12

 0  25  50  75  100

Th
ro

ug
hp

ut
 (1

03  
tx

n/
s)

Percentage Reads

Distributed Maude Implementation - Lock_B

Txn_size=4
Txn_size=8

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Th
ro

ug
hp

ut
 (1

03  
tx

n/
s)

Skew Factor (Theta)

C++ Implementation - Lock_A

50% Updates
100% Updates

 0

 20

 40

 60

 80

 0  25  50  75  100

Th
ro

ug
hp

ut
 (1

03  
tx

n/
s)

Percentage Reads

C++ Implementation - Lock_B

Txn_size=4
Txn_size=8

Fig. 2. NO WAIT: Throughput comparison between statistical model checking (top),
distributed Maude implementation (middle), and C++ implementation (bottom). Ex-
periments Lock A (left) and Lock B (right) measure throughput of different ratios of
updates and transaction sizes when varying skew factors and ratios of reads, respec-
tively.



22 S. Liu et al.

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 0  25  50  75  100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e 

un
it)

Percentage Reads

Statistical Model Checking - ROLA_A

5 Partitions
3 Partitions

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60Th
ro

ug
hp

ut
 (t

xn
/ti

m
e 

un
it)

Concurrent Clients

Statistical Model Checking - ROLA_B

95% Reads
50% Reads

 0

 100

 200

 300

 400

 0  25  50  75  100

Th
ro

ug
hp

ut
 (t

xn
/s

)

Percentage Reads

Distributed Maude Implementation - ROLA_A

5 Partitions
3 Partitions

 0

 100

 200

 300

 400

 0  5  10  15  20  25  30  35
Th

ro
ug

hp
ut

 (t
xn

/s
)

Concurrent Clients

Distributed Maude Implementation - ROLA_B

95% Reads
50% Reads

Fig. 3. ROLA: Comparison between statistical model checking (top) and distributed
Maude implementation (bottom). Experiments ROLA A (left) and ROLA B (right)
measure throughput for different number of partitions and different ratios of reads
when varying ratios of reads and concurrent clients, respectively.

the number of concurrent clients, and focus on the effect of increasing the amount
of contention (95% reads against 50% reads). Both plots in each experiment agree
reasonably well.

All consistency properties model checked in [28] are preserved (Theorem 4)
assuming correct execution of the trusted code base.

Data Availability. The system models, properties specifications, and distributed
Maude implementations are available at github.com/siliunobi/d-transformation.

6 Related Work

Our work is related to various formal frameworks for specification, verification,
and implementation of distributed systems that try to reduce the formality gap
[48] between the formal specification of a distributed system’s design and its
implementation. They can be roughly classified in three categories (only some
example frameworks in each category are discussed):

1. Specification, Verification, and Compilation to Imperative Imple-
mentation. The IOA formal framework [33,15] formalizes distributed system
designs as IO-automata, provides a toolset for both model checking and theorem
proving verification of IOA designs, and offers also the possibility of generating
Java distributed implementations of IO designs by compilation. Haberl and his



Generating Distributed Implementations from Maude Designs 23

colleagues [16,17] target embedded automotive systems, and use synchronous
dataflows combined with finite automata to specify designs (and SystemC sim-
ulations to measure complexity). They generates C code from the high-level
models, but do not prove that the generated C code correctly implements the
models.

2. Specification, Verification, and Proof of Imperative Implementa-
tion. A good example of state-of-the-art recent work in this category is the
IronFleet framework [19]. Distributed systems are specified in a mixture of Lam-
port’s TLA and Hoare logic assertions for imperative sequential code in Leino’s
Dafny language [22]. They are then formally verified with various tools, including
Z3 [38] and the Dafny prover. Dafny code is then complied into C# code.

3. Specification, Verification, and Transformation into Correct Dis-
tributed Implementation. Work in this category has for the most part been
based on constructive logical frameworks such as those of Nuprl [13] and Coq
[7] and has been shown effective in generating sophisticated system implementa-
tions. In particular: (i) the Event-ML framework begins with an Event-ML spec-
ification and the desired properties both expressed in Nuprl and extracts a GPM
program implementation; (ii) theVerdi framework [47] begins with a distributed
system design and a set of safety properties, both specified in Coq; it offers the
important advantage of allowing the specifier to ignore various network failures
and replication issues: they are delegated to so-called verified system transform-
ers which automatically transform the design and ensure correct execution of
the transformed design under such failure scenarios. After desired properties are
verified in Coq, the OCaml code of a correct implementation is extracted and
deployed using a trusted shim; (iii) the Chapar framework [23] is specialized to
extract correct-by-construction implementations of key-value stores in OCaml
from formal specifications of such stores and of their consistency properties ex-
pressed and verified in Coq; and (iv) the Disel modular framework [43] specifies
both distributed system designs and their desired properties in separation logic,
it expresses both the system and property specifications in Coq, uses Coq to
prove the desired properties, and extracts correct-by-construction OCaml code,
which is then deployed using a trusted shim.

Discussion and Comparison with the Maude Framework. To the best of
our knowledge, none of the above frameworks provide support for prediction of
performance properties by statistical model checking,8 whereas Maude does so
through the PVeSta tool [2]. Regarding work in category (1), the Maude frame-
work shares the use of executable specifications and the availability of a formal
environment of model checking and theorem proving tools with IOA; but in com-
parison with IOA’s automatic generation of Java distributed implementations
from IOA specifications, the Maude approach substantially reduces the “for-
mality gap” by avoiding compilation into a complex imperative language. The

8 Probabilistic system behaviors can be specified using probabilistic IOA [10]. How-
ever, we are not aware of tools supporting statistical model checking analysis of
performance properties for distributed system designs in the IOA framework.



24 S. Liu et al.

main difference with the IronFleet framework in category (2) is that imperative
programs are a problematic, low level choice for expressing formal design spec-
ifications. Furthermore, system properties can be considerably harder to prove
at that level. Regarding frameworks in category (3), the present work within
the Maude framework shares with them the possibility of generating correct-
by-construction distributed implementations from designs; but adds to them the
following additional possibilities: (i) rapid exploration of different design alterna-
tives by testing and by automatic breadth first search, LTL and statistical model
checking analysis of such designs; (ii) prediction of system performance proper-
ties before implementation; (iii) flexible range of properties that can be verified
of a design: theorem proving verification of both invariants [41] and reachability
logic properties [44] is supported but is not required : LTL and statistical model
checking verification can already yield systems with considerably higher quality
than those developed by conventional methods; and (iv) using Maude to both
specify and implement the system makes the correctness of the implementation
easy to prove, while it would be very hard to prove the correctness with quite
different modeling and implementation languages. The main point is that, for
an entirely new system never specified or built before, beginning with a human-
intensive theorem proving verification effort may be both premature and costly.
Instead, in the Maude framework designs can be thoroughly analyzed and im-
proved by fully automated formal methods before a mature design is fully verified
using theorem proving tools.

7 Conclusions

We have presented the M 7→ D(M) transformation and proved that M and a
modelD0(M) ofD(M) abstracting network communication details are stuttering
bisimilar and therefore satisfy the same safety and liveness properties. We have
also presented two case studies evaluating the performance of D(M) for designs
M of two state-of-the-art distributed transaction systems, and that of a high-
perfomance conventional implementation. These case studies have also confirmed
that the statistical-model-checking-based performance predictions obtained from
a design M before implementation are similar to the performance measures for
D(M) and a conventional implementation. This work shows that it is possible to
automatically generate reasonable, but not yet optimal, correct-by-construction
distributed implementations from very high level and easy to understand exe-
cutable formal specifications of state-of-the-art system designs which are much
shorter (a factor of 20 for the C++ implementation of NO WAIT) than conven-
tional implementations.

The current Maude implementation of the M 7→ D(M) transformation is
an unoptimized prototype with ample room for improvement. The next obvi-
ous step is to arrive at a mature Maude implementation of the M 7→ D(M)
transformation.



Generating Distributed Implementations from Maude Designs 25

References

1. AlTurki, M., Meseguer, J.: Dist-Orc: A rewriting-based distributed implementation
of Orc with formal analysis. In: RTRTS’10. EPTCS, vol. 36, pp. 26–45 (2010)

2. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and
quantitative analysis tool. In: CALCO’11. LNCS, vol. 6859, pp. 386–392. Springer
(2011)

3. Bae, K., Meseguer, J.: Model checking linear temporal logic of rewriting formulas
under localized fairness. Sci. Comput. Program. 99, 193–234 (2015)

4. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1–15:45
(2016)

5. Baker, J., Bond, C., Corbett, J.C., Furman, J.J., Khorlin, A., Larson, J., Leon, J.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing scalable, highly available
storage for interactive services. In: CIDR’11. pp. 223–234 (2011)

6. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: IMC’10. pp. 267–280. ACM (2010)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

8. Bobba, R., Grov, J., Gupta, I., Liu, S., Meseguer, J., Ölveczky, P.C., Skeirik,
S.: Survivability: Design, formal modeling, and validation of cloud storage sys-
tems using Maude. In: Assured Cloud Computing, chap. 2, pp. 10–48. Wiley-IEEE
Computer Society Press (2018)

9. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1-3), 386–414 (2006)

10. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Task-structured probabilistic I/O automata. J. Comput. Syst. Sci. 94,
63–97 (2018)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2001)

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

13. Constable, R.L.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice Hall (1987)

14. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SOCC’10. pp. 143–154. ACM (2010)

15. Georgiou, C., Lynch, N.A., Mavrommatis, P., Tauber, J.A.: Automated imple-
mentation of complex distributed algorithms specified in the IOA language. STTT
11(2), 153–171 (2009)

16. Haberl, W.: Code Generation and System Integration of Distributed Automotive
Applications. Ph.D. thesis, Technical University Munich (2011)

17. Haberl, W., Herrmannsdoerfer, M., Kugele, S., Tautschnig, M., Wechs, M.: Seam-
less model-driven development put into practice. In: ISoLA. LNCS, vol. 6415, pp.
18–32. Springer (2010)

18. Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evaluation of distributed
concurrency control. Proc. VLDB Endow. 10(5), 553–564 (2017)

19. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017)

20. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media (2010)



26 S. Liu et al.

21. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX ATC’10. USENIX Association (2010)

22. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR’10. LNCS, vol. 6355, pp. 348–370. Springer (2010)

23. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed
key-value stores. In: POPL’16. pp. 357–370. ACM (2016)

24. Liu, S.: Design, Verification and Automatic Implementation of Correct-by-
Construction Distributed Transaction Systems in Maude. Ph.D. thesis, University
of Illinois at Urbana-Champaign (2019)

25. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Transactions on
Embedded Systems 4(1), 03:1–03:26 (2017)

26. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design al-
ternatives for RAMP transactions through statistical model checking. In: ICFEM.
LNCS, Springer (2017)

27. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC. ACM (2016)

28. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
A new distributed transaction protocol and its formal analysis. In: FASE. LNCS,
vol. 10802, pp. 77–93. Springer (2018)

29. Liu, S., Ölveczky, P.C., Wang, Q., Gupta, I., Meseguer, J.: Read atomic trans-
actions with prevention of lost updates: ROLA and its formal analysis. Formal
Aspects of Computing (2019)

30. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis of
the Walter transactional data store. In: WRLA. LNCS, vol. 11152, pp. 136–152.
Springer (2018)

31. Liu, S., Ölveczky, P.C., Zhang, M., Wang, Q., Meseguer, J.: Automatic analysis of
consistency properties of distributed transaction systems in Maude. In: TACAS’19.
LNCS, vol. 11428, pp. 40–57. Springer (2019)

32. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: ICFEM. LNCS, vol. 8829. Springer (2014)

33. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
34. Manolios, P.: A compositional theory of refinement for branching time. In:

CHARME’03. LNCS, vol. 2860, pp. 304–318. Springer (2003)
35. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-

oretical Computer Science 96(1), 73–155 (1992)
36. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic and Logic Programming

81, 721–781 (2012)
37. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. J. Log. Algebr.

Program. 79(2), 103–143 (2010)
38. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS’08. LNCS,

vol. 4963, pp. 337–340. Springer (2008)
39. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:

How Amazon Web Services uses formal methods. Communications of the ACM
58(4), 66–73 (April 2015)

40. Ölveczky, P.C.: Formalizing and validating the p-store replicated data store in
maude. In: WADT’16. LNCS, vol. 10644, pp. 189–207. Springer (2016)

41. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In:
CALCO’11. LNCS, vol. 6859, pp. 314–328. Springer (2011)

42. Schiper, N., Sutra, P., Pedone, F.: P-store: Genuine partial replication in wide area
networks. In: SRDS’10. pp. 214–224. IEEE Computer Society (2010)



Generating Distributed Implementations from Maude Designs 27

43. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. PACMPL 2(POPL), 28:1–28:30 (2018)

44. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: LOPSTR. LNCS, vol. 10855, pp. 201–217. Springer (2017)

45. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP’11. pp. 385–400. ACM (2011)

46. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: OSDI. USENIX Association (2002)

47. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: A framework for implementing and formally verifying distributed
systems. In: PLDI’15. pp. 357–368. ACM (2015)

48. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the Raft consensus protocol. In: CPP’16.
pp. 154–165. ACM (2016)


