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Abstract. Many transaction systems distribute, partition, and replicate
their data for scalability, availability, and fault tolerance. However, ob-
serving and maintaining strong consistency of distributed and partially
replicated data leads to high transaction latencies. Since different appli-
cations require different consistency guarantees, there is a plethora of
consistency properties—from weak ones such as read atomicity through
various forms of snapshot isolation to stronger serializability properties—
and distributed transaction systems (DTSs) guaranteeing such proper-
ties. This paper presents a general framework for formally specifying a
DTS in Maude, and formalizes in Maude nine common consistency prop-
erties for DTSs so defined. Furthermore, we provide a fully automated
method for analyzing whether the DTS satisfies the desired property
for all initial states up to given bounds on system parameters. This is
based on automatically recording relevant history during a Maude run
and defining the consistency properties on such histories. To the best
of our knowledge, this is the first time that model checking of all these
properties in a unified, systematic manner is investigated. We have im-
plemented a tool that automates our method, and use it to model check
state-of-the-art DTSs such as P-Store, RAMP, Walter, Jessy, and ROLA.

1 Introduction

Applications handling large amounts of data need to partition their data for scal-
ability and elasticity, and need to replicate their data across widely distributed
sites for high availability and fault and disaster tolerance. However, guaran-
teeing strong consistency properties for transactions over partially replicated
distributed data requires lot of costly coordination that results in long transac-
tion delays. Different applications require different consistency guarantees, and
balancing well the trade-off between performance and consistency guarantees is
key to designing distributed transaction systems (DTSs). There is therefore a
plethora of consistency properties for DTSs over partially replicated data—from
weak properties such as read atomicity through various forms of snapshot isola-
tion to strong serializability guarantees—and DTSs providing such guarantees.

DTSs and their consistency guarantees are typically specified informally and
validated only by testing; there is very little work on their automated formal
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analysis (see Section 8). We have previously formally modeled and analyzed sin-
gle state-of-the-art industrial and academic DTSs, such as Google’s Megastore,
Apache Cassandra, Walter, P-Store, Jessy, ROLA, and RAMP, in Maude [15].

In this paper we present a generic framework for formalizing both DTSs and
their consistency properties in Maude. The modeling framework is very general
and should allow us to naturally model most DTSs. We formalize nine popular
consistency models in this framework and provide a fully automated method—
and a tool which automates this method—for analyzing whether a DTS specified
in our framework satisfies the desired consistency property for all initial states
with the user-given number of transactions, data items, sites, and so on.

In particular, we show how one can automatically add a monitoring mech-
anism which records relevant history during a run of a DTS specified in our
framework, and we define the consistency properties on such histories so that
the DTS can be directly model checked in Maude. We have implemented a tool
that uses Maude’s meta-programming features to automatically add the moni-
toring mechanism, that automatically generates all the desired initial states, and
that performs the Maude model checking. We have applied our tool to model
check state-of-the-art DTSs such as variants of RAMP, P-Store, ROLA, Walter,
and Jessy. To the best of our knowledge, this is the first time that model checking
of all these properties in a unified, systematic manner is investigated.

This paper is organized as follows. Section 2 provides background on rewrit-
ing and Maude. Section 3 gives an overview of the consistency properties that
we formalize. Section 4 presents our framework for modeling DTSs in Maude,
and Section 5 explains how to record the history in such models. Section 6 for-
mally defines consistency models as Maude functions on such recorded histories.
Section 7 briefly introduces our tool which automates the entire process. Finally,
Section 8 discusses related work and Section 9 gives some concluding remarks.

2 Rewriting Logic and Maude

Maude [15] is a rewriting-logic-based executable formal specification language
and high-performance analysis tool for object-based distributed systems.

A Maude module specifies a rewrite theory (Σ,E ∪A,R), where:

– Σ is an algebraic signature; i.e., a set of sorts, subsorts, and function symbols.
– (Σ,E∪A) is a membership equational logic theory [15], with E a set of possi-

bly conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (Σ,E∪A) specifies
the system’s states as members of an algebraic data type.

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

Equations and rewrite rules are introduced with, respectively, keywords eq,
or ceq for conditional equations, and rl and crl. The mathematical variables
in such statements are declared with the keywords var and vars, or can have
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the form var:sort and be introduced on the fly. An equation f(t1, . . . , tn) = t
with the owise (“otherwise”) attribute can be applied to a subterm f(. . .) only
if no other equation with left-hand side f(u1, . . . , un) can be applied. Maude also
provides standard parameterized data types (sets, maps, etc.) that can be in-
stantiated (and renamed); for example, pr SET{Nat} * (sort Set{Nat} to Nats)

defines a sort Nats of sets of natural numbers.
A class declaration class C | att1 : s1, ..., attn : sn declares a class

C of objects with attributes att1 to attn of sorts s1 to sn. An object instance of
class C is represented as a term < O : C | att1 : val1, . . . , attn : valn >, where
O, of sort Oid, is the object’s identifier, and where val1 to valn are the current
values of the attributes att1 to attn. A message is a term of sort Msg. A system
state is modeled as a term of the sort Configuration, and has the structure of
a multiset made up of objects and messages.

The dynamic behavior of a system is axiomatized by specifying each of its
transition patterns by a rewrite rule. For example, the rule (with label l)

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines a family of transitions in which a message m(O, w) is read and consumed
by an object O of class C, whose attribute a1 is changed to x + w, and a new
message m’(O’,x) is generated. Attributes whose values do not change and do
not affect the next state, such as a3 and a2, need not be mentioned in a rule.

Maude also supports metaprogramming in the sense that a Maude specifi-
cation M can be represented as a term M (of sort Module), so that a module
transformation can be defined as a Maude function f : Module→ Module.

Reachability Analysis in Maude. Maude provides a number of analysis methods,
including rewriting for simulation purposes, reachability analysis, and linear tem-
poral logic (LTL) model checking. In this paper, we use reachability analysis.
Given an initial state init , a state pattern pattern and an (optional) condition
cond , Maude’s search command searches the reachable state space from init in
a breadth-first manner for states that match pattern such that cond holds:

search [bound] init =>! pattern such that cond .

where bound is an upper bound on the number of solutions to look for. The arrow
=>! means that Maude only searches for final states (i.e., states that cannot be
further rewritten) that match pattern and satisfies cond . If the arrow is instead
=>* then Maude searches for all reachable states satisfying the search condition.

3 Transactional Consistency

Different applications require different consistency guarantees. There are there-
fore many consistency properties for DTSs on partially replicated distributed
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data stores. This paper focuses on the following nine, which span a spectrum
from weak consistency such as read committed to strong consistency like serial-
izability:

– Read committed (RC ) [6] disallows a transaction4 from seeing any uncom-
mitted or aborted data.

– Cursor stability (CS ) [17], widely implemented by commercial SQL systems
(e.g., IBM DB2 [1]) and academic prototypes (e.g., MDCC [23]), guarantees
RC and in addition prevents the lost update anomaly.

– Read atomicity (RA) [5] guarantees that either all or none of a (distributed)
transaction’s updates are visible to other transactions. For example, if Alice
and Bob become friends on social media, then Charlie should not see that
Alice is a friend of Bob’s, and that Bob is not a friend of Alice’s.

– Update atomicity (UA) [13,28] guarantees read atomicity and prevents the
lost update anomaly.

– Snapshot isolation (SI ) [6] requires a multi-partition transaction to read
from a snapshot of a distributed data store that reflects a single commit
order of transactions across sites, even if they are independent of each other:
Alice sees Charlie’s post before seeing David’s post if and only if Bob sees the
two posts in the same order. Charlie and David must therefore coordinate
the order of committing their posts even if they do not know each other.

– Parallel snapshot isolation (PSI ) [39] weakens SI by allowing different com-
mit orders at different sites, while guaranteeing that a transaction reads the
most recent version committed at the transaction execution site, as of the
time when the transaction begins. For example, Alice may see Charlie’s post
before seeing David’s post, even though Bob sees David’s post before Char-
lie’s post, as long as the two posts are independent of each other. Charlie
and David can therefore commit their posts without waiting for each other.

– Non-monotonic snapshot isolation (NMSI ) [4] weakens PSI by allowing a
transaction to read a version committed after the transaction begins: Alice
may see Bob’s post that committed after her transaction started executing.

– Serializability (SER) [36] ensures that the execution of concurrent transac-
tions is equivalent to one where the transactions are run one at a time.

– Strict Serializability (SSER) strengthens SER by enforcing the serial order
to follow real time.

4 Modeling Distributed Transaction Systems in Maude

This section presents a framework for modeling in Maude DTSs that satisfy the
following general assumptions:

4 A transaction is a user application request, typically consisting of a sequence of read
and/or write operations on data items, that is submitted to a (distributed) database.
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– We can identify and record “when”5 a transaction starts executing at its
server/proxy and “when” the transaction is committed and aborted at the
different sites involved in its validation.

– The transactions record their read and write sets.

If a such a DTS is modeled in this framework, our tool can automatically model
check whether it satisfies the above consistency properties, as long as it can detect
the read and write sets and the above events: start of transaction execution, and
abort/commit of a transaction at a certain site. This section explains how the
system should be modeled so that our tool automatically discovers these events.

We make the following additional assumptions about the DTSs we target:

– The database is distributed across of a number of sites, or servers or repli-
cas, that communicate by asynchronous message passing. Data are partially
replicated across these sites: a data item may be replicated/stored at more
than one site. The sites replicating a data item are called that item’s replicas.

– Systems evolve by message passing or local computations. Servers commu-
nicate by asynchronous message passing with arbitrary but finite delays.

– A client forwards a transaction to be executed to some server (called the
transaction’s executing server or proxy), which executes the transaction.

– Transaction execution should terminate in commit or abort.

4.1 Modeling DTSs in Maude

A DTS is modeled in an object-oriented style, where the state consists of a num-
ber of replica objects, each modeling a local database/server/site, and a number
of messages traveling between the replica objects. A transaction is modeled as
an object which resides inside the replica object executing the transaction.

Basic Data Types. There are user-defined sorts Key for data items (or keys) and
Version for versions of data items, with a partial order < on versions, with v < v′

denoting that v′ is a later version of v in <:

op _<_ : Version Version -> Bool.

We then define key-version pairs <key,version> and sets of such pairs, that
model a transaction’s read and write sets, as follows:

sorts Key Version KeyVersion .

op <_,_> : Key Version -> KeyVersion .

pr SET{KeyVersion} * (sort Set{KeyVersion} to KeyVersions) .

Example 1. A version in our Maude model [29] of the Walter transactional data
store [39] consists of the executing server’s identifier, and a sequence number
local to that server:

5 Since we do not necessarily deal with real-time systems, this “when” may not denote
the real time, but when the event takes place relative to other events.
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op <<_,_>> : Oid Nat -> Version .

where the sort Oid refers to the object identifier, and Nat models sequence
numbers as natural numbers.

To track the status of a transaction (on non-proxies, or remote servers) we
define a sort TxnStatus consisting of some transaction’s identifier and its status;
this is used to indicate whether a remote transaction (one executed on another
server) is committed on this server:

op [_,_] : Oid Bool -> TxnStatus [ctor] .

pr SET{TxnStatus} * (sort Set{TxnStatus} to TxnStatusSet) .

Modeling Replicas. A replica (or site) stores parts of the database, executes the
transactions for which it is the proxy, helps validating other transactions, and is
formalized as an object instance of a subclass of the following class Replica:

class Replica | executing : Configuration, committed : Configuration,

aborted : Configuration, decided : TxnStatusSet .

The attributes executing, committed, and aborted contain, respectively, trans-
actions that are being executed, and have been committed or aborted on the ex-
ecuting server; decided is the status of transactions executed on other servers.

To model a system-specific replica a user should specify it as an object in-
stance of a subclass of the class Replica with new attributes.

Example 2. A replica in our Maude model of Walter [29] is modeled as an object
instance of the following subclass Walter-Replica of class Replica that adds
14 new attributes (only 4 shown below):

class Walter-Replica | store : Datastore, sqn : Nat,

locked : Locks, votes : Vote, ...

subclass Walter-Replica < Replica .

Modeling Transactions. A transaction should be modeled as an object of a sub-
class of the following class Txn:

class Txn | readSet : KeyVersions, writeSet : KeyVersions .

where readSet and writeSet denote the key/version pairs read and written by
the transaction, respectively.

Example 3. Walter transactions can be modeled as object instances of the sub-
class Walter-Txn with four new attributes:

class Walter-Txn | operations : OperationList, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

subclass Walter-Txn < Txn .
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Modeling System Dynamics. We describe how the rewrite rules defining the start
of a transaction execution and aborts and commits at different sites should be
defined so that our tool can detect these events.

– The start of a transaction execution must be modeled by a rewrite rule where
the transaction object appears in the proxy server’s executing attribute in
the right-hand side, but not in the left-hand side, of the rewrite rule.

Example 4. A Walter replica starts executing a transaction by moving the
transaction TID in gotTxns (buffering transactions from clients) to executing:6

rl [start-txn] :

< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,

gotTxns : < TID : Txn | startVTS : empty > ;; TXNS >

=>

< RID : Walter-Replica | gotTxns : TXNS,

executing : TRANSES < TID : Txn | startVTS : VTS > > .

– When a transaction is committed on the executing server, the transaction
object must appear in the committed attribute in the right-hand side—but
not in the left-hand side—of the rewrite rule. Furthermore, the readSet and
writeSet attributes must be explicitly given in the transaction object.

Example 5. In Walter, when all operations of an executing read-only trans-
action have been performed, the proxy commits the transaction directly:

rl [commit-read-only-txn] :

< RID : Walter-Replica | committed : TRANSES’,

executing : TRANSES

< TID : Txn | operations : nil, writeSet : empty, readSet : RS > >

=>

< RID : Walter-Replica | committed : (TRANSES’ < TID : Txn | > ),

executing : TRANSES > .

– When a transaction is aborted by the executing server, the transaction object
must appear in the aborted attribute in the right-hand side, but not in the
left-hand side, of a rewrite rule. Again, the transaction should present its
attributes writeSet and readSet (to be able to record relevant history).

Example 6. If either of the two conflict checks for fast commit fails, the
executing Walter replica aborts the transaction:

crl [fast-commit-failed] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica |

executing : < TID : Txn | operations : nil, writeSet : WS,

readSet : RS, startVTS : VTS > TRANSES,

aborted : TRANSES’, history : DS, locked : LOCKS >

6 We do not give variable declarations, but follow the convention that variables are
written in (all) capital letters.



8 S. Liu et al.

=>

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,

aborted : TRANSES’ < TID : Txn | > >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE)

/\ (modified(WS, VTS, DS) or locked(WS, LOCKS)) .

– A rewrite rule that models when a transaction’s status is decided remotely
(i.e., not on the executing server) must contain in the right-hand side (only)
the transaction’s identifier and its status in the replica’s decided attribute.

Example 7. Upon receiving the “disaster-safe durable” message, the remote
Walter replica “commits” the transaction TID by setting its status to true:

crl [receive-ds-durable-visible] :

msg ds-durable(TID) from RID’ to RID

< RID : Walter-Replica |

recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

committedVTS : VTS’, locked : LOCKS, decided : TSS >

=>

< RID : Walter-Replica |

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS), decided : (TSS, [TID,true] ) >

msg visible(TID) from RID to RID’

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

These requirements are not very strict. The Maude models of the DTSs RAMP
[32], Faster [27], Walter [29], ROLA [28], Jessy [31], and P-Store [35] can all
be seen as instantiations of our modeling framework, with very small syntactic
changes, such as defining transaction and replica objects as subclasses of Txn

and Replica, changing the names of the attributes and sorts, etc. The Apache
Cassandra NoSQL key-value store can be seen as a transaction system where
each transaction is a single operation; the Maude model of Cassandra in [33] can
also be easily modified to fit within our modeling framework.

5 Adding Execution Logs

To formalize and analyze consistency properties of distributed transaction sys-
tems we add an “execution log” that records the history of relevant events during
a system execution. This section explains how this history recording can be added
automatically to a model of a DTS that is specified as explained in Section 4.

5.1 Execution Log

To capture the total order of relevant events in a run, we use a “logical global
clock” to order all key events (i.e., transaction starts, commits, and aborts). This
clock is incremented by one each time such an event takes place.
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A transaction in a replicated DTS is typically committed both locally (at
its executing server) and remotely at different times. To capture this, we define
a “time vector” using Maude’s map data type that maps replica identifiers (of
sort Oid) to (typically “logical”) clock values (of sort Time, which here are the
natural numbers: subsort Nat < Time):

pr MAP{Oid,Time} * (sort Map{Oid,Time} to VectorTime) .

where each element in the mapping has the form replica-id |-> time .
An execution log (of sort Log) maps each transaction (identifier) to a record

<proxy , issueTime, finishTime, committed , reads, writes>, with proxy its proxy
server, issueTime the starting time at its proxy server, finishTime the com-
mit/abort times at each relevant server, committed a flag indicating whether the
transaction is committed at its proxy, reads the key-version pairs read by the
transaction, and writes the key-version pairs written:

sort Record .

op <_,_,_,_,_,_> : Oid Time VectorTime Bool KeyVersions KeyVersions -> Record .

pr MAP{Oid,Record} * (sort Map{Oid,Record} to Log) .

5.2 Logging Execution History

We show how the relevant history of an execution can be recorded during a run
of our Maude model by transforming the original Maude model into one which
also records this history.

First, we add to the state a Monitor object that stores the current logical
global time in the clock attribute and the current log in the log attribute:

< M : Monitor | clock : Time, log : Log >.

The log is updated each time an interesting event (see Section 4.1) happens.
Our tool identifies those events and automatically transforms the corresponding
rewrite rules by adding and updating the monitor object.

Executing. A transaction starts executing when the transaction object appears
in a Replica’s executing attribute in the right-hand side, but not in the left-
hand side, of a rewrite rule. The monitor then adds a record for this transaction,
with the proxy and start time, to the log, and increments the logical global clock.

Example 8. The rewrite rule in Example 4 where a Walter replica is served a
transaction is modified by adding and updating the monitor object (in blue):

rl [start-txn] :

< O@M : Monitor | clock : GT@M, log : LOG@M >

< RID : Walter-Replica | executing : TRANSES, committedVTS : VTS,

gotTxns : < TID : Txn | startVTS : empty > ;; TXNS >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M,

(TID |-> < RID, GT@M, empty, false, empty, empty >) >

< RID : Walter-Replica | gotTxns : TXNS,

executing : TRANSES < TID : Txn | startVTS : VTS > > .
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where the monitor O@M adds a new record for the transaction TID in the log, with
starting time (i.e., the current logical global time) GT@M at its executing server
RID, finish time (empty), flag (false), read set (empty), and write set (empty).
The monitor also increments the global clock by one.

Commit. A transaction commits at its proxy when the transaction object ap-
pears in the proxy’s committed attribute in the right-hand side, but not in the
left-hand side, of a rewrite rule. The record for that transaction is updated with
commit status, versions read and written, and commit time, and the global log-
ical clock is incremented.

Example 9. The monitor object is added to the rewrite rule in Example 5 for
committing a read-only transaction:

rl [commit-read-only-txn] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

(TID |-> < RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

< RID : Walter-Replica | committed : TRANSES’,

executing : TRANSES

< TID : Txn | operations : nil, writeSet : empty, readSet : RS > >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

(TID |-> < RID, T@M, insert(RID,GT@M,VTS@M), true, RS, empty >)

< RID : Walter-Replica | committed : (TRANSES’ < TID : Txn | >),

executing : TRANSES > .

The monitor updates the log for the transaction TID by setting its finish time
at the executing server RID to GT@M (insert(RID,GT@M,VTS@M)), setting the
committed flag to true, setting the read set to RS and write set to empty (this
is a read-only transaction), and increments the global clock.

Abort. Abort is treated as commit, but the commit flag remains false.

Example 10. The monitor object is added to the rewrite rule in Example 6 for
aborting a transaction:

crl [fast-commit-failed] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

(TID |-> < RID, T@M, VTS@M, FLAG@M, READS@M, WRITES@M)) >

< TABLE : Table | table : REPLICA-TABLE >

< RID : Walter-Replica |

executing : < TID : Txn | operations : nil, writeSet : WS,

readSet : RS, startVTS : VTS > TRANSES,

aborted : TRANSES’, history : DS, locked : LOCKS >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

(TID |-> < RID, T@M, insert(RID,GT@M,VTS@M), false, RS, WS >)

< TABLE : Table | >

< RID : Walter-Replica | executing : TRANSES,
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aborted : TRANSES’ < TID : Txn | > >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE)

/\ (modified(WS, VTS, DS) or locked(WS, LOCKS)) .

Decided. When a transaction’s status is decided remotely, the record for that
transaction’s decision time at the remote replica is updated with the current
global time.

Example 11. The rewrite rule from Example 7 for committing a transaction
remotely is transformed into the following rewrite rule:

crl [receive-ds-durable-visible] :

< O@M : Monitor | clock : GT@M, log : LOG@M ,

TID |-> < VTS1@M, VTS2@M, FLAG@M, READS@M, WRITES@M > >

msg ds-durable(TID) from RID’ to RID

< RID : Walter-Replica |

recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

committedVTS : VTS’, locked : LOCKS, decided : TSS >

=>

< O@M : Monitor | clock : GT@M + 1 , log : LOG@M ,

TID |-> < VTS1@M, insert(RID,GT@M,VTS2@M) , FLAG@M, READS@M, WRITES@M > >

< RID : Walter-Replica |

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS), decided : (TSS, [TID,true] ) >

msg visible(TID) from RID to RID’

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

where the monitor O@M only needs to add the commit time for the replica RID,
besides advancing the global time.

5.3 Implementing Monitoring Mechanism

We have formalized/implemented the transformation from a Maude specification
of a DTS into one with a monitor as a meta-level function monitorRules in Maude.
Specifically, the transformation takes as input Maude modules including the rewrite
rules specifying the system dynamics, instruments the “interesting” rewrites rules at
the meta-level according to the monitoring mechanism, and outputs a new flattened
model of the system and the monitor.

The function monitorRules takes as argument a rewrite rule and returns a new
one that is possibly equipped with the monitor and its behavior. The following two
equations are defined to formalize the monitoring mechanism:

ceq monitorRules(rl T => T’ [ATR] .) = (rl T1 => T2 [ATR] .)

if ’__[T1,T2] := monitorTerms(T,T’,false) .

ceq monitorRules(crl T => T’ if COND [ATR] .) =

(crl T1 => T2 if COND [ATR] .)

if ’__[T1,T2] := monitorTerms(T,T’,false) .
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The first equation handles an unconditional rewrite rule, while the second one
handles a conditional one.

The meta-level function monitorTerms takes terms T and T’ from both sides
of a rule, and returns, if monitor needed, two new ones T1 and T2, forming
the new rule with the monitor’s behavior. The monitor’s behavior depends
on the input rewrite rule in terms of either the execution, local commit, re-
mote commit, or abort of the transaction. In the cases where the monitor
should be added, the term T1 is a concatenation of the term T and the monitor
pattern (e.g., < O@M : Monitor | clock: GT@M, log: (TID |-> < VTS1@M,

VTS2@M, FLAG@M, READS@M, WRITES@M), LOG@M)>), while the term T2 is a con-
catenation of the term T’, and the resulting monitor pattern determined by the
status change of the transaction encoded by the input rewrite rule.

Example 12. The definition of monitorTerms in the case of Commit is defined
by the following equation:

--- case 2: locally committed

ceq monitorTerms(T,T’) =

’__[’__[newMonitor(getTID(T1)),T],

’__[resultMonitor(getTID(T), getReplicaID(T),’true.Bool,

getAttr(’readSet‘:_,T1),getAttr(’writeSet‘:_,T1)),T’]]

if isCommitted(T,T’) /\ T1 := getAttr(’executing‘:_,T) .

where the function newMonitor is used to construct a new monitor pattern
with a given transaction’s identifier, and resultMonitor constructs the resulting
pattern with the transaction’s identifier, replica’s identifier, a Boolean value
indicating whether the transaction is successfully committed or not, the set of
versions read, and the set of versions written by the transaction. The function
isCommitted returns true if the transition from T to T’ is caused by the local
commit of the transition T1, which is determined by whether the transaction
appears in the attribute committed in T’, but not in that in T.

6 Formalizing Consistency Models in Maude

This section formalizes the consistency properties in Section 3 as functions on
the “history log” of a completed run. We can then use these functions to au-
tomatically analyze in Maude whether a system with a given initial state sat-
isfies a desired consistency property by searching for a final state (all transac-
tions have finished) where the desired property does not hold on the history
log. The entire Maude specification of these functions is available at https:

//github.com/siliunobi/cat.

Read Committed (RC). (A transaction cannot read any writes by uncommit-
ted transactions.) Note that standard definitions for single-version databases
disallow reading versions that are not committed at the time of the read. We
follow the definition for multi-versioned systems by Adya, summarized by Bailis
et al. [5], that defines the RC property as follows: (i) a committed transaction
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cannot read a version that was written by an aborted transaction; and (ii) a
transaction cannot read intermediate values: that is, if T writes two versions
< X,V > and < X,V’ > with V < V’, then no T ′ 6= T can read < X,V >.

The first equation defining the function rc, specifying when RC holds, checks
whether some (committed) transaction TID1 read version V of key X (i.e., < X,V >
is in TID’s read set < X,V > , RS, where RS matches the rest of TID’s read set), and
this version V was written by some transaction TID2 that was never committed
(i.e., TID2’s commit flag is false, and its write set is < X,V > , WS’). The second
equation checks whether there was an intermediate read of a version < X,V > that
was overwritten by the same transaction TID2 that wrote the version:7

op rc : Log -> Bool .

eq rc(TID1 |-> < O, T, VT, true, (< X,V >, RS), WS >,

TID2 |-> < O’, T’, VT’, false, RS’, (< X,V >, WS’) >, LOG) = false .

ceq rc(TID1 |-> < O, T, VT, true, (< X,V >, RS), WS >,

TID2 |-> < O’, T’, VT’, true, RS’, (< X,V >, < X,V’ >,WS’) >,

LOG) = false if V < V’ .

eq rc(LOG) = true [owise] .

Read Atomicity (RA). A system guarantees RA if it prevents fractured reads and
prevents transactions from reading uncommitted or aborted data. A transaction
Tj exhibits fractured reads if transaction Ti writes versions xm and yn, Tj reads
version xm and version yk, and k < n [5]. The function fracRead checks whether
there are fractured reads in the log. There is a fractured read if a transaction
TID2 reads X and Y, transaction TID1 writes X and Y, TID2 reads the version VX

of X written by TID1, and reads a version VY’ of Y written before VY (VY’ < VY):

op fracRead : Log -> Bool .

ceq fracRead(TID1 |-> < O, T, VT, true, (< X,VX > , < Y,VY’ >, RS), WS >,

TID2 |-> < O’, T’, VT’, true, RS’, (< X,VX > , < Y,VY >, WS’) >, LOG)

= true if VY’ < VY .

eq fracRead(LOG) = false [owise] .

We define RA as the combination of RC and no fractured reads:

op ra : Log -> Bool .

eq ra(LOG) = rc(LOG) and not fracRead(LOG) .

Cursor Stability (CS) [17] strengthens RC by also preventing lost updates (LU).
LU can only happen with multiple conditional writes (i.e., a transaction first
fetches some value of an data item, and then updates it with a new value)
fetching the same data. Once one of those transactions commits its writes, the
others must be aborted. The function lu captures the case when there are two
committed transactions TID1 and TID2, both of which read the same version

7 The configuration union and the union operator ‘,’ for maps and sets are declared as-
sociative and commutative. The first equation therefore matches any log where some
committed transaction read a key-version pair written by some aborted transaction.
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V of data item X (i.e., < X,V > is in the read sets of both TID1 and TID2), and
commit on the same key (i.e., the two transactions wrote < X,VX > and < X,VX’ >,
respectively):

op lu: Log -> Bool .

eq lu(TID1 |-> < O, T, VT, true, (< X,V > , RS), (< X,VX >, WS) >,

TID2 |-> < O’, T’, VT’, true, (< X,V > , RS’), (< X,VX’ >, WS’) >,LOG) = true .

eq lu(LOG) = false [owise] .

CS can then be specified as conjunction of RC and no lost updates:

op cs : Log -> Bool .

eq cs(LOG) = rc(LOG) and not lu(LOG) .

Update Atomicity [13,28] provides read atomicity and prevents lost updates:

op ua : Log -> Bool .

eq ua(LOG) = ra(LOG) and not lu(LOG) .

Snapshot Isolation (SI) is defined by two properties in [39]:

– SI-1 (snapshot read): All operations in a transaction read the most recent
committed version as of time when the transaction began.

– SI-2 (no write-write conflicts): The write sets of each pair of committed
concurrent8 transactions must be disjoint.

The function notSnapshotRead holds when SI-1 is violated. The first conditional
equation handles the case when a transaction TID1 reads another transaction
TID2’s version written (< X,V >), while the most recent committed version from
TID1’s perspective is < X,V’ > written by TID3 (TID3’s commit time T’ at its
proxy RID3 is between TID2’s commit time T at its proxy RID2 and TID1’s start
time T1). The second conditional equation checks if TID1 read some version that
was committed after it started (T1 < T):

op notSnapshotRead : Log -> Bool .

ceq notSnapshotRead(

TID1 |-> < RID1, T1, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T2, (RID2 |-> T, VT2), true, RS2, (< X,V >, WS2) >,

TID3 |-> < RID3, T3, (RID3 |-> T’, VT3), true, RS3, (< X,V’ > , WS3) >,

LOG) = true if V =/= V’ /\ T’ < T1 /\ T’ > T .

ceq notSnapshotRead(

TID1 |-> < RID1, T1, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T2, (RID2 |-> T, VT2), true, RS2, (< X,V >, WS2) >,

LOG) = true if T1 < T .

eq notSnapshotRead(LOG) = false [owise] .

8 Two committed transactions are concurrent if one of them has a commit timestamp
(at its proxy) between the start and the commit timestamp of the other.
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The function wwConflict captures write-write conflicts: there are two trans-
actions TID1 and TID2, both writing key X, and TID2 is committed at its proxy
at time T, which comes after the start time T1 of TID1 but before its commit
time T2 at its proxy. The committed (flag true) transactions TID1 and TID2 are
therefore concurrent and write the same key, and hence we have a write-write
conflict:

op wwConflict: Log -> Bool .

ceq wwConflict(

TID1 |-> < RID, T1, (RID |-> T2 , VT2), true, RS, (< X,V > , WS) >,

TID2 |-> < RID’, T3, (RID’ |-> T , VT4), true, RS’, (< X,V’ > , WS’) >,

LOG) = true if T > T1 /\ T < T2 .

eq wwConflict(LOG) = false [owise] .

SI holds when there is no violation of snapshot read and no write-write conflicts:

op si : Log -> Bool .

eq si(LOG) = not notSnapshotRead(LOG) and not wwConflict(LOG) .

Parallel snapshot isolation (PSI) is given by three properties [39]:

– PSI-1 (site snapshot read): All operations read the most recent committed
version at the transaction’s site as of time when the transaction began.

– PSI-2 (no write-write conflicts): The write sets of each pair of committed
somewhere-concurrent9 transactions must be disjoint.

– PSI-3 (commit causality across sites): If a transaction T1 commits at a site
S before a transaction T2 starts at site S, then T1 cannot commit after T2
at any site.

The function notSiteSnapshotRead checks whether the system log satisfies
PSI-1 by returning true if there is a transaction that did not read the most
recent committed version at its executing site when it began:

op notSiteSnapshotRead : Log -> Bool .

ceq notSiteSnapshotRead(

TID1 |-> < RID1, T, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS2, (< X,V > , WS2) >,

TID3 |-> < RID3, T’’, (RID1 |-> T3 , VT3), true, RS3,(< X,V’ > , WS3) >,

LOG) = true if V =/= V’ /\ T3 < T /\ T3 > T2 .

ceq notSiteSnapshotRead(

TID1 |-> < RID1, T, VT1, true, (< X,V > , RS1), WS1 >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS2, (< X,V > , WS2) >,

LOG) = true if T < T2 .

eq notSiteSnapshotRead(LOG) = false [owise] .

9 Two transactions are somewhere-concurrent if they are concurrent at one of their
sites.
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In the first equation, the transaction TID1, hosted at site RID1, has in its read set
a version < X,V > written by TID2. Some transaction TID3 wrote version < X,V’ >

and was committed at RID1 after TID2 was committed at RID1 (T3 > T2) and
before TID1 started executing (T3 < T). Hence, the version read by TID1 was
stale. The second equation checks if TID1 read some version that was committed
at RID1 after TID1 started (T < T2).

The function someWhereConflict checks whether PSI-2 holds by looking
for a write-write conflict between any pair of committed somewhere-concurrent
transactions in the system log:

op someWhereConflict : Log -> Bool .

ceq someWhereConflict(

TID1 |-> < RID1, T, (RID1 |-> T1 , VT1), true, RS, (< X,V > , WS) >,

TID2 |-> < RID2, T’, (RID1 |-> T2 , VT2), true, RS’, (< X,V’ > , WS’) >,

LOG) = true if T2 > T /\ T2 < T1 .

eq someWhereConflict(LOG) = false [owise] .

In contrast with the function wwConflict, the above function checks whether
the transactions with the write conflict are concurrent at the transaction TID1’s
proxy RID1. Here, TID2 commits at RID1 at time T2, which is between TID1’s
start time T and its commit time T1 at RID1.

The function notCausality analyzes PSI-3 by checking whether there was
a “bad situation” in which a transaction TID1 committed at site RID2 before a
transaction TID2 started at site RID2 (T1 < T2), while TID1 committed at site
RID after TID2 committed at site RID (T3 > T4):

op notCausality : Log -> Bool .

ceq notCausality(

TID1 |-> < RID1, T, (RID2 |-> T1 , RID |-> T3 , VT2), true, RS, WS >,

TID2 |-> < RID2, T2, (RID |-> T4 , VT4), true, RS’, WS’ >,

LOG) = true if T1 < T2 /\ T3 > T4 .

eq notCausality(LOG) = false [owise] .

PSI can then be defined by combining the above three properties:

op psi : Log -> Bool .

eq psi(LOG) = not notSiteSnapshotRead(LOG) and

not someWhereConflict(LOG) and not notCausality(LOG) .

Non-monotonic snapshot isolation (NMSI) is the same as PSI except that a
transaction may read a version committed even after the transaction begins [3].
NMSI can therefore be defined as the conjunction of PSI-2 and PSI-3:

op nmsi : Log -> Bool .

eq nmsi(LOG) = not someWhereConflict(LOG) and not notCausality(LOG) .
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Serializability (SER) means that the concurrent execution of transactions is
equivalent to executing them in some (non-overlapping in time) sequence [36].

A formal definition of SER is based on direct serialization graphs (DSGs):
an execution is serializable if and only if the corresponding DSG is acyclic. Each
node in a DSG corresponds to a committed transaction, and directed edges in a
DSG correspond to the following types of direct dependencies [2]:

– Read dependency: Transaction Tj directly read-depends on transaction Ti if
Ti writes some version xi and Tj reads that version xi.

– Write dependency: Transaction Tj directly write-depends on transaction Ti
if Ti writes some version xi and Tj writes x’s next version after xi in the
version order.

– Antidependency: Transaction Tj directly antidepends on transaction Ti if Ti
reads some version xk and Tj writes x’s next version after xk.

There is a directed edge from a node Ti to another node Tj if transaction Tj
directly read-/write-/antidepends on transaction Ti.

The dependencies/edges can easily be extracted from the our log as follows:

– If there is a key-version pair < X , V > both in T2’s read set and in T1’s write
set, then T2 read-depends on T1.

– If T1 writes < X, V1 > and T2 writes < X, V2 >, and V1 < V2, and there no
version < X, V > with V1 < V < V2, then T2 write-depends on T1.

– T2 antidepends on T1 if < X, V1 > is in T1’s read set, < X, V2 > is in T2’s write
set with V1 < V2 and there is no version < X, V > such that V1 < V < V2.

We have defined in Maude a data type Dsg for DSGs:

sorts Dsg Edge . subsort Edge < Dsg .

op <_;_> : Oid Oid -> Edge [ctor] .

eq E ; E = E .

op emptyDsg : -> Dsg [ctor] .

op _;_ : Dsg Dsg -> Dsg [ctor assoc comm id: emptyDsg] .

We have defined a function dsg that constructs the DSG from a log by iter-
atively adding edges between committed transactions (aborted transactions are
dropped from the log):

op dsg : Log -> Dsg .

op dsg : Log Log Dsg -> Dsg .

eq dsg(LOG) = dsg(LOG,LOG,emptyDsg) .

eq dsg((TID |-> < O,T,VT,false,RS,WS >,LOG’),LOG,DSG) = dsg(LOG’,LOG,DSG) .

For each transaction in the log, the construction builds up dependency edges
with the read set and write set in order; within the read/write set, the construc-
tion checks dependencies for each version read/written.

First, we find read dependencies for versions read in the read set:
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ceq dsg((TID |-> < O,T,VT,true,(KVER,RS),WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(KVER,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(KVER,WS’) >,LOG),

(DSG ; < TID’ ; TID >)) if TID =/= TID’ .

where the transaction TID reads KVER written by another transaction TID’, and
thus a new edge < TID’ ; TID > is added to the DSG.

If VS’ written by the transaction TID’ is the next version of VS read by the
transaction TID, we add an antidependency edge < TID ; TID’ > to the DSG:

ceq dsg((TID |-> < O,T,VT,true,(< X,VS >,RS),WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),

(DSG ; < TID ; TID’ >))

if VS < VS’ /\ TID =/= TID’ /\ not committedBetween(X,VS,VS’,LOG) .

where the function committedBetween returns true if there is a version commit-
ted between the two versions in the version order. It is defined as:

op committedBetween : Key Version Version Log -> Bool .

ceq committedBetween(X,VS,VS’,

(TID |-> < O,T,VT,true,RS, (< X,VS’’ >,WS) >,LOG))

= true if VS’’ < VS’ /\ VS < VS’’ .

eq committedBetween(X,VS,VS’,LOG) = false [owise] .

If there is no more edge to add for the current version read, we move to the
next version read:

eq dsg((TID |-> < O,T,VT,true,(< X,VS >,RS),WS >,LOG’),LOG,DSG)

= dsg((TID |-> < O,T,VT,true,RS,WS >,LOG’),LOG,DSG) [owise] .

Once all versions read in the read set are handled, we continue to build up
the DSG by investigating the write set.

If the transaction TID’ writes the next version VS’ of VS written by another
transaction TID, an write-dependency edge < TID ; TID’ > is added to the DSG:

ceq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,RS’,(< X,VS’ >,WS’) >,LOG),

(DSG ; < TID ; TID’ >))

if VS < VS’ /\ TID =/= TID’ /\ not committedBetween(X,VS,VS’,LOG) .

If VS written by the transaction TID is the next version of VS’ read by the
transaction TID’, we add an antidependency edge < TID’ ; TID > to the DSG:
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ceq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),

(TID’ |-> < O’,T’,VT’,true,(< X,VS’ >,RS’),WS’ >,LOG),DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),

(TID’ |-> < O’,T’,VT’,true,(< X,VS’ >,RS’),WS’ >,LOG),

(DSG ; < TID’ ; TID >))

if VS’ < VS /\ TID =/= TID’ /\ not committedBetween(X,VS’,VS,LOG) .

If there is no more edge to add for the current version written, we move to
the next version written:

eq dsg((TID |-> < O,T,VT,true,empty,(< X,VS >,WS) >,LOG’),LOG,DSG)

= dsg((TID |-> < O,T,VT,true,empty,WS >,LOG’),LOG,DSG) [owise] .

When all dependency edges are handled for a transaction (indicated by empty

for both the read set and write set), we move to the next (committed) transac-
tion:

eq dsg((TID |-> < O,T,VT,true,empty,empty >,LOG’),LOG,DSG)

= dsg(LOG’,LOG,DSG) .

Finally, we get the resulting DSG out of the execution history:

eq dsg(empty,LOG,DSG) = DSG .

Based on the constructed DSG, we define a function cycle : Dsg -> Bool that
checks whether the DSG has cycles:

op cycle : Dsg -> Bool .

eq cycle(DSG) = cycle(txnIds(DSG),DSG,empty) .

op cycle : OidSet Dsg OidSet -> Bool .

ceq cycle((TID,TIDS),DSG,TIDS’) = true if TID in TIDS’ .

ceq cycle((TID,TIDS),DSG,TIDS’) =

cycle(destNodes(TID,DSG),DSG,(TIDS’,TID))

or cycle(TIDS,DSG,TIDS’) if not (TID in TIDS’) .

eq cycle(empty,DSG,TIDS’) = false .

where the function txnIds returns a set of identifiers of all transactions in the
DSG; the function destNodes computes for some node in the DSG all nodes it
directly points to by the dependency edges:

op txnIds : Dsg -> OidSet .

eq txnIds(DSG ; < TID ; TID’ >) = TID ; TID’ ; txnIds(DSG) .

eq txnIds(emptyDsg) = empty .

op destNodes : Oid Dsg -> OidSet .

eq destNodes(TID,(< TID ; TID’ > ; DSG)) = TID’ ; destNodes(TID,DSG) .

eq destNodes(TID,DSG) = empty [owise] .

SER then holds if there is no cycle in the constructed DSG:

op ser : Log -> Bool .

eq ser(LOG) = not cycle(dsg(LOG)) .
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Strict Serializability (SSER) guarantees that all transactions can be serialized in
an order that also respects the real time order. For example, under SSER, once
an update transaction commits its writes, all later transactions (where “later”
is defined by wall-clock time modeled by our logical global clock) should return
the version of that transaction or the version of a later update transaction.

Thus we define the following three functions to check if the read, write, or
anti- dependency does not respect the real-time order, respectively.

If a transaction reads some stale data, the read dependency violates the real-
time order:

op notRtReadDep : Log -> Bool .

ceq notRtReadDep((TID1 |-> < RID,T,VT,true,(< X,VS >,RS),WS >,

TID2 |-> < RID’,T1,(RID’ |-> T2,VT’),true,RS’,

(< X,VS >,WS’) >,LOG)) = true

if T2 < T /\ rtCommittedBetween(X,T2,T,LOG) .

where the transaction TID1 reads the stale data < X,VS > written by TID2. The
data is stale because there is some version committed between TID2’s commit and
TID1’s start in real time. This is determined by the function rtCommittedBetween:

op rtCommittedBetween : Key Time Time Log -> Bool .

ceq rtCommittedBetween(X,T1,T2,

(TID |-> < RID,T,(RID |-> T’,VT),true,RS,(< X,V >,WS) >,LOG))

= true if T1 < T’ /\ T’ < T2 .

eq rtCommittedBetween(X,T1,T2) = false [owise] .

The write dependency violates the real-time order if one version is the next
version of the other in the version order, but there is some version committed
in-between in real time:

op notRtWriteDep : Log -> Bool .

ceq notRtWriteDep((

TID1 |-> < RID,T1,(RID |-> T1’,VT),true,RS,(< X,VS >,WS) >,

TID2 |-> < RID’,T2,(RID’ |-> T2’,VT’),true,RS’,

(< X,VS’ >,WS’) >,LOG)) = true

if VS < VS’ /\ not committedBetween(X,VS,VS’,LOG) /\

T1’ < T2’ /\ rtCommittedBetween(X,T1’,T2’,LOG) .

where the version VS’ is the next version of VS, but there is some version com-
mitted between the respective commit times T1’ and T2’.

The antidependency violates the real-time order if the version written is the
next version of the version read in the version order with some version committed
between the two versions in real time:

op notRtAntiDep : Log -> Bool .

ceq notRtAntiDep((

TID1 |-> < RID1,T1,(RID1 |-> T1’,VT1),true,(< X,VS >,RS1),WS1 >,

TID2 |-> < RID2,T2,(RID2 |-> T2’,VT2),true,RS2,(< X,VS’ >,WS2) >,

LOG)) = true

if VS < VS’ /\ not committedBetween(X,VS,VS’,LOG) /\

T1’ < T2’ /\ rtCommittedBetween(X,T1’,T2’,LOG) .
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Finally, by combining the three checks we have the definition for SSER:

op sser : Log -> Bool .

eq sser(LOG) = not notRtReadDep(LOG) and

not notRtWriteDep(LOG) and not notRtAntiDep(LOG) .

7 Formal Analysis of Consistency Properties of DTSs

We have implemented the Consistency Analysis Tool (CAT) that automates the
method in this paper. CAT takes as input:

– A Maude model of the DTS specified as explained in Section 4.
– The number of each of the following parameters: read-only, write-only, and

read-write transactions; operations for each type of transaction; clients; servers;
keys; and replicas per key. The tool analyzes the desired property for all ini-
tial states with the number of each of these parameters.

– The consistency property to be analyzed.

Given these inputs, CAT performs the following steps:

1. adds the monitoring mechanism to the user-provided system model;
2. generates all possible initial states with the user-provided number of the

different parameters; and
3. executes the following command to search, from all generated initial states,

for one reachable final state where the consistency property does not hold:

search [1] init =>! C:Configuration

< M:Oid : Monitor | log: LOG:Log clock: N:Nat >

such that not consistency-property(LOG:Log) .

where the underlined functions are parametric, and are instantiated by the
user inputs; e.g., consistency-property is replaced by the corresponding
function rc, psi, nmsi, . . . , or ser, depending on which property to analyze.

CAT outputs either “No solution,” meaning that all runs from all the given
initial states satisfy the desired consistency property, or a counterexample (in
Maude at the moment) showing a behavior that violates the property.

We have applied our tool to 15 Maude models of state-of-the-art DTSs (dif-
ferent variants of RAMP and Walter, ROLA, Jessy, P-Store, and Cassandra)
against all nine properties. Table 1 shows our experience with CAT: all model
checking results are as expected. It is worth remarking that our automatic anal-
ysis found all the violations of properties that the respective systems should
violate. There are also some cases where model checking is not applicable (“-
” in Table 1): (i) some system models do not include a mechanism for com-
mitting a transaction on remote servers (i.e., no commit time on any remote
server is recorded by the monitor). Thus, model checking NMSI or PSI is not
applicable; and (ii) Cassandra is a NoSQL key-value store that concerns only
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non-transactional consistency models. Thus, model checking transactional con-
sistency properties is not applicable.

We have performed our analysis with different initial states, with up to 4
transactions, 4 operations per transaction, 2 clients, 2 servers, 2 keys, and 2
replicas per key. Each analysis command took about 10 minutes (worst case) to
execute on a 2.9 GHz Intel 4-Core i7-3520M CPU with 3.6 GB memory.

Table 1. Model Checking Results w.r.t. Consistency Properties. “X”, “×”, and “-”
refer to satisfying and violating the property, and “not applicable”, respectively.

Maude Model LOC Consistency Property
RC RA CS UA NMSI PSI SI SER SSER

RAMP-F [32] 330 X X × × - - × × ×
RAMP-F+1PW [27] 302 X X × × - - × × ×
RAMP-F+FC [27] 305 X X × × - - × × ×
RAMP-F¬2PC [27] 320 X × × × - - × × ×

RAMP-S [32] 255 X X × × - - × × ×
RAMP-S+1PW [27] 237 X X × × - - × × ×
RAMP-S¬2PC [27] 248 X × × × - - × × ×

Faster [27] 300 X × × × - - × × ×
Faster+FC [27] 220 X × × × - - × × ×

ROLA [28] 411 X X X X - - × × ×
Jessy [31] 413 X X X X X × × × ×

Walter¬Repl [28] 800 X X X X X X × × ×
Walter [29] 830 X X X X X X × × ×
P-Store [35] 438 X X X X X X X X ×

Cassandra [30] 252 - - - - - - - - -

8 Related Work

Formalizing Consistency Properties in a Single Framework. Adya [2] uses depen-
dencies between reads and writes to define different isolation models in database
systems. Bailis et al. [5] adopts this model to define read atomicity. Burck-
hardt et al. [11] and Cerone et al. [13] propose axiomatic specifications of con-
sistency models for transaction systems using visibility and arbitration relation-
ships. Shapiro et al. [38] propose a classification along three dimensions (total
order, visibility, and transaction composition) for transactional consistency mod-
els. Crooks et al. [16] formalizes transactional consistency properties in terms of
observable states from a client’s perspective. On the non-transactional side, Bur-
ckhardt [10] focuses on session and eventual consistency models. Viotti et al. [41]
expands his work by covering more than 50 non-transactional consistency prop-
erties. Szekeres et al. [40] propose a unified model based on result visibility to
formalize both transactional and non-transactional consistency properties.
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All of these studies propose semantic models of consistency properties suit-
able for theoretical analysis. In contrast, we aim at algorithmic methods for au-
tomatically verifying consistency properties based on executable specifications of
both the systems and their consistency models. Furthermore, none of the studies
covered all of the transactional consistency models considered in this paper.

Model Checking Distributed Transaction Systems. There is very little work on
model checking state-of-the-art DTSs, maybe because the complexity of these
systems requires expressive formalisms. Engineers at Amazon Web Services suc-
cessfully used TLA+ to model check key algorithms in Amazon’s Simple Storage
Systems and DynamoDB database [34]; however, they do not state which consis-
tency properties, if any, were model checked. The designers of the TAPIR trans-
action protocol have specified and model checked correctness properties of their
design using TLA+ [44]. The IronFleet framework [22] combines TLA+ analy-
sis and Floyd-Hoare-style imperative verification to reason about protocol-level
concurrency and implementation complexities, respectively. Their methodology
requires “considerable assistance from the developer” to perform the proofs. Cai
[12] proposes some basic patterns for modeling real-time transactions, and uses
Timed Computation Tree Logic (TCTL) to specify the timeliness and ACID
properties. Li [26] models three multi-version concurrency control mechanisms
using the patterns in [12], and verifies transaction timeliness and SER in UP-
PAAL. These case studies are based on timed automata, and none of them checks
state-of-the-art DTSs.

Distributed model checkers [24,43] are used to model check implementations
of distributed systems such as Cassandra, ZooKeeper, the BerkeleyDB database
and a replication protocol implementation.

Our previous work [20,21,33,30,35,27,28,29,31,8] specifies and model checks
single DTSs and consistency properties in different ways, as opposed to in a
single framework that, furthermore, automates the “monitoring” and analysis
process.

Other Formal Reasoning about Distributed Database Systems. Cerone et al. [14]
develop a new characterization of SI and apply it to the static analysis of DTSs.
Bernardi et al. [7] propose criteria for checking the robustness of transactional
programs against consistency models. Bouajjani et al. [9] propose a formal def-
inition of eventual consistency, and reduce the problem of checking eventual
consistency to reachability and model checking problems. Gotsman et al. [19]
propose a proof rule for reasoning about non-transactional consistency choices.

There is also work [42,25,37] that focuses on specifying, implementing and
verifying distributed systems using the Coq proof assistant. Their executable Coq
“implementations” can be seen as executable high-level formal specifications, but
the theorem proving requires nontrivial user interaction.

Finally, the authors in [18] apply both model checking and meta-programming
techniques in Maude to a distributed snapshot algorithm and its reachability
property, but they do not consider neither transaction systems nor consistency
properties.
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9 Concluding Remarks

In this paper we have provided an object-based framework for formally model-
ing distributed transaction systems (DTSs) in Maude, have explained how such
models can be automatically instrumented to record relevant events during a
run, and have formally defined a wide range of consistency properties on such
histories of events. We have implemented a tool which automates the entire
instrumentation and model checking process. Our framework is very general:
we could easily adapt previous Maude models of state-of-the-art DTSs such as
Apache Cassandra, P-Store, RAMP, Walter, Jessy, and ROLA to our framework.

We then model checked the DTSs w.r.t. all the consistency properties for all
initial states with 4 transactions, 2 sites, and so on. This analysis was sufficient
to differentiate the DTSs according to which consistency properties they satisfy.

In future work we should formally relate our definitions of the consistency
properties to other (non-executable) formalizations of consistency properties. We
should also extend our work to formalizing and model checking non-transactional
consistency properties for key-value stores such as Cassandra.
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20. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Specification, Algebra, and Software. LNCS, vol. 8373.
Springer (2014)
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