180 research outputs found

    Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles

    Full text link
    The inverse spinels CoFe2O4 and NiFe2O4, which have been of particular interest over the past few years as building blocks of artificial multiferroic heterostructures and as possible spin-filter materials, are investigated by means of density functional theory calculations. We address the effect of epitaxial strain on the magneto-crystalline anisotropy and show that, in agreement with experimental observations, tensile strain favors perpendicular anisotropy, whereas compressive strain favors in-plane orientation of the magnetization. Our calculated magnetostriction constants λ100\lambda_{100} of about -220 ppm for CoFe2O4 and -45 ppm for NiFe2O4 agree well with available experimental data. We analyze the effect of different cation arrangements used to represent the inverse spinel structure and show that both LSDA+U and GGA+U allow for a good quantitative description of these materials. Our results open the way for further computational investigations of spinel ferrites

    Thermal expansion of Ti-substituted barium hexaferrite

    Get PDF
    Thermal expansion measurements in the range of 20–500 °C were carried out on both poly- and single crystalline samples of the hexagonal magnetoplumbite ferrite with composition BaTiFe11O19. The continuous scanning of the thermal expansion reveals the existence of a -type anomaly near the Curie temperature. In contrast to the usual observed anisotropic behavior for magnetoplumbite hexaferrites, the averaged thermal expansion coefficient for the a direction is larger than for the c direction, i.e., 12.8×10–6 and 9.5×10–6 °C–1, respectively

    Relaxor ferroelectricity and the freezing of short-range polar order in magnetite

    Get PDF
    A thorough investigation of single crystalline magnetite using broadband dielectric spectroscopy and other methods provides evidence for relaxor-like polar order in Fe3O4. We find long-range ferroelectric order to be im-peded by the continuous freezing of polar degrees of freedom and the formation of a tunneling-dominated glasslike state at low temperatures. This also explains the lack of clear evidence for a non-centrosymmetric crystal structure below the Verwey transition. Within the framework of recent models assuming an intimate relation of charge and polar order, the charge order, too, can be speculated to be of short-range type only and to be dominated by tunneling at low temperatures.Comment: 16 pages, 4 figures, final version with revisions according to referee demand

    Thermomagnetic history effects in SmMn2_2Ge2_2

    Full text link
    The intermetallic compound SmMn2_2Ge2_2, displaying multiple magnetic phase transitions, is being investigated in detail for its magnetization behavior near the 145 K first order ferromagnetic to antiferromagnetic transition occuring on cooling, in particular for thermomagnetic history effects in the magnetization data. The most unusual finding is that the thermomagnetic irreversibility, [= MFCW^{FCW}(T)-MZFC^{ZFC}(T)] at 135 K is higher in intermediate magnetic field strengths. By studying the response of the sample (i.e., thermomagnetic irreversibility and thermal hysteresis) to different histories of application of magnetic field and temperature, we demonstrate how the supercooling and superheating of the metastable magnetic phases across the first order transition at 145 K contribute to overall thermomagnetic irreversibility.Comment: 15 pages, 5 figures, to appear in Physical Review

    Phase separation in the non-equilibrium Verwey transition in magnetite

    Get PDF
    We present equilibrium and out-of-equilibrium studies of the Verwey transition in magnetite. In the equilibrium optical conductivity, we find a step-like change at the phase transition for photon energies below about 2 eV. The possibility of triggering a non-equilibrium transient metallic state in insulating magnetite by photo excitation was recently demonstrated by an x-ray study. Here we report a full characterization of the optical properties in the visible frequency range across the non-equilibrium phase transition. Our analysis of the spectral features is based on a detailed description of the equilibrium properties. The out-of-equilibrium optical data bear the initial electronic response associated to localized photo-excitation, the occurrence of phase separation, and the transition to a transient metallic phase for excitation density larger than a critical value. This allows us to identify the electronic nature of the transient state, to unveil the phase transition dynamics, and to study the consequences of phase separation on the reflectivity, suggesting a spectroscopic feature that may be generally linked to out-of-equilibrium phase separation

    In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution

    Get PDF
    In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning

    Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3'-end antisense transcription

    Get PDF
    International audienceHistone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by Set1 is repression, achieved through promotion of 3'-end antisense transcription to achieve specific rather than global effects through two distinct mechanisms
    • …
    corecore