2,075 research outputs found

    Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data

    Full text link
    The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.Comment: 32 pages. First part of a series of 2 papers. Typos correcte

    “It's like you’re actually playing as yourself”: Development and preliminary evaluation of ‘Green Acres High’, a serious game-based primary intervention to combat adolescent dating violence

    Get PDF
    AbstractThis paper provides an overview of the development of ‘Green Acres High’, a serious game-based primary intervention to raise awareness of and change attitudes towards dating violence in adolescents, and an analysis of how adolescents described their experience of playing this game. Transcripts from focus group data were analysed using thematic analysis. The global theme that was developed, Assessment of the game, was represented by two organising themes, Positive assessment: Pedagogical Underpinnings and Negative Assessment: Functionality Limitations and Frustrations. These represented the fact that overall the learning experience was positive based on the pedagogical principles and content that could be embedded in this digital game but that technical issues with the game needed to be addressed as these could impinge on the learning experience of the adolescents. It was seen that using a serious game was a valid and meaningful way for adolescents to learn about dating violence and that this is a viable alternative or adjunct to traditional teaching methods

    Event Horizons in Numerical Relativity II: Analyzing the Horizon

    Full text link
    We present techniques and methods for analyzing the dynamics of event horizons in numerically constructed spacetimes. There are three classes of analytical tools we have investigated. The first class consists of proper geometrical measures of the horizon which allow us comparison with perturbation theory and powerful global theorems. The second class involves the location and study of horizon generators. The third class includes the induced horizon 2-metric in the generator comoving coordinates and a set of membrane-paradigm like quantities. Applications to several distorted, rotating, and colliding black hole spacetimes are provided as examples of these techniques.Comment: 23 double column pages including 28 figures. Higher quality figures (big size!) available upon request (jmasso OR [email protected]

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    An Analysis of Private School Closings

    Get PDF
    We add to the small literature on private school supply by exploring exits of K-12 private schools. We find that the closure of private schools is not an infrequent event, and use national survey data from the National Center for Education Statistics to study closures of private schools. We assume that the probability of an exit is a function of excess supply of private schools over the demand, as well as the school's characteristics such as age, size, and religious affiliation. Our empirical results generally support the implications of the model. Working Paper 07-0

    Monitoring hydration in lime-metakaolin composites using electrochemical impedance spectroscopy and nuclear magnetic resonance spectroscopy

    Get PDF
    This paper describes a study of the hydraulic reactions between metakaolin (MK) and air lime using electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance spectroscopy (NMR). Tests were carried out at 20, 25 and 30 degrees C on lime-MK pastes with 10:1 w/w ratio. Tests over 28 days allowed identification of relevant changes in the EIS signals and characterization of pastes using thermal analysis (TGA/DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and uni-axial compressive tests. Tests over shorter periods of time (up to 42 h) allowed more detailed studies of the hydraulic phases formed at the very beginning of the reactions. Results of thermal analyses demonstrate formation of hydraulic compounds such as CSH, C(4)AH(13) and C(3)ASH(6) and show their evolution over time. MIP analysis demonstrates changes in pore size distribution related to the formation and trasformation of hydraulic phases. Variations of impedance response with time are shown to be associated with reaction kinetics. Changes in the NMR signal within the first 42 h of reaction are shown to be associated with the dissolution of calcium hydroxide in the pore solution. Overall, this paper demonstrates the importance of NMR in the study of hydraulic reactions in lime based materials and the ability of EIS to detect the formation of hydraulic compounds and the end of the calcium hydroxide dissolution process

    Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    Full text link
    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR

    Low Self-Esteem and Impairments in Emotion Recognition Predict Behavioural Problems in Children

    Get PDF
    Research indicates that low self-esteem and impaired emotion recognition are risk factors for antisocial behaviour (ASB). Self-esteem and emotion recognition are essential for successful social interaction and previous research suggests that self-esteem and emotional intelligence are positively related. However, to our knowledge the relationship between these two risk factors for ASB has not been explored in children with behavioural problems. Thus, this study investigated self-esteem and emotion recognition, their relationship with one another and with behavioural problem severity. Participants were 8–11 year olds with behavioural problems (BP; n = 78) who were taking part in an early intervention program, and typically developing controls (TD; n = 54). Participants completed a self-esteem questionnaire and a computerised emotion recognition task. Teachers and parents rated children’s emotional and behavioural problems. BP participants had significantly lower self-esteem and exhibited an impairment in emotion recognition. Self-esteem and emotion recognition were positively related and inversely associated with behavioural problem severity and they predicted behaviour problems independently of one another. This is the first study to show that self-esteem and emotion recognition are related processes in children with behavioural problems and that both predict behavioural problems. This has important implications for the development of intervention strategies
    • 

    corecore