1,952 research outputs found

    Hide-and-Seek with Directional Sensing

    Full text link
    We consider a game played between a hider, who hides a static object in one of several possible positions in a bounded planar region, and a searcher, who wishes to reach the object by querying sensors placed in the plane. The searcher is a mobile agent, and whenever it physically visits a sensor, the sensor returns a random direction, corresponding to a half-plane in which the hidden object is located. We first present a novel search heuristic and characterize bounds on the expected distance covered before reaching the object. Next, we model this game as a large-dimensional zero-sum dynamic game and we apply a recently introduced randomized sampling technique that provides a probabilistic level of security to the hider. We observe that, when the randomized sampling approach is only allowed to select a very small number of samples, the cost of the heuristic is comparable to the security level provided by the randomized procedure. However, as we allow the number of samples to increase, the randomized procedure provides a higher probabilistic security level.Comment: A short version of this paper (without proofs) will be presented at the 18th IFAC World Congress (IFAC 2011), Milan (Italy), August 28-September 2, 201

    Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit

    Full text link
    A comprehensive investigation of the frequency-noise spectral density of a free-running mid-infrared quantum-cascade laser is presented for the first time. It provides direct evidence of the leveling of this noise down to a white noise plateau, corresponding to an intrinsic linewidth of a few hundred Hz. The experiment is in agreement with the most recent theory on the fundamental mechanism of line broadening in quantum-cascade lasers, which provides a new insight into the Schawlow-Townes formula and predicts a narrowing beyond the limit set by the radiative lifetime of the upper level.Comment: 4 pages, 4 figure

    Massive creation of entangled exciton states in semiconductor quantum dots

    Full text link
    An intense laser pulse propagating in a medium of inhomogeneously broadened quantum dots massively creates entangled exciton states. After passage of the pulse all single-exciton states remain unpopulated (self-induced transparency) whereas biexciton coherence (exciton entanglement) is generated through two-photon transitions. We propose several experimental techniques for the observation of such unexpected behavior

    Radiative corrections to the excitonic molecule state in GaAs microcavities

    Full text link
    The optical properties of excitonic molecules (XXs) in GaAs-based quantum well microcavities (MCs) are studied, both theoretically and experimentally. We show that the radiative corrections to the XX state, the Lamb shift ΔXXMC\Delta^{\rm MC}_{\rm XX} and radiative width ΓXXMC\Gamma^{\rm MC}_{\rm XX}, are large, about 103010-30 % of the molecule binding energy ϵXX\epsilon_{\rm XX}, and definitely cannot be neglected. The optics of excitonic molecules is dominated by the in-plane resonant dissociation of the molecules into outgoing 1λ\lambda-mode and 0λ\lambda-mode cavity polaritons. The later decay channel, ``excitonic molecule \to 0λ\lambda-mode polariton + 0λ\lambda-mode polariton'', deals with the short-wavelength MC polaritons invisible in standard optical experiments, i.e., refers to ``hidden'' optics of microcavities. By using transient four-wave mixing and pump-probe spectroscopies, we infer that the radiative width, associated with excitonic molecules of the binding energy ϵXX0.91.1\epsilon_{\rm XX} \simeq 0.9-1.1 meV, is ΓXXMC0.20.3\Gamma^{\rm MC}_{\rm XX} \simeq 0.2-0.3 meV in the microcavities and ΓXXQW0.1\Gamma^{\rm QW}_{\rm XX} \simeq 0.1 meV in a reference GaAs single quantum well (QW). We show that for our high-quality quasi-two-dimensional nanostructures the T2=2T1T_2 = 2 T_1 limit, relevant to the XX states, holds at temperatures below 10 K, and that the bipolariton model of excitonic molecules explains quantitatively and self-consistently the measured XX radiative widths. We also find and characterize two critical points in the dependence of the radiative corrections against the microcavity detuning, and propose to use the critical points for high-precision measurements of the molecule bindingenergy and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.

    Indistinguishability of independent single photons

    Full text link
    The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform limited pulses and makes photons distinguishable. Only the single photons with the same transform limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.Comment: 6 pages, 3 figure

    Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics

    Get PDF
    Abstract In this paper we study the chemical reaction of inhibition, determine the appropriate parameter ε for the application of Tihonov's Theorem, compute explicitly the equations of the center manifold of the system and find sufficient conditions to guarantee that in the phase space the curves which relate the behavior of the complexes to the substrates by means of the tQSSA are asymptotically equivalent to the center manifold of the system. Some numerical results are discussed

    Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots

    Full text link
    Optically controlled coherent dynamics of charge (excitonic) degrees of freedom in a semiconductor quantum dot under the influence of lattice dynamics (phonons) is discussed theoretically. We show that the dynamics of the lattice response in the strongly non-linear regime is governed by a semiclassical resonance between the phonon modes and the optically driven dynamics. We stress on the importance of the stability of intermediate states for the truly coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl

    Chemically-specific dual/differential CARS micro-spectroscopy of saturated and unsaturated lipid droplets

    Get PDF
    We have investigated the ability of dual-frequency Coherent Antistokes Raman Scattering (D-CARS) micro-spectroscopy, based on femtosecond pulses (100 fs or 5 fs) spectrally focussed by glass dispersion, to distinguish the chemical composition of micron-sized lipid droplets consisting of different triglycerides types (poly-unsaturated glyceryl trilinolenate, mono-unsaturated glyceryl trioleate and saturated glyceryl tricaprylate and glyceryl tristearate) in a rapid and label-free way. A systematic comparison of Raman spectra with CARS and D-CARS spectra was used to identify D-CARS spectral signatures which distinguish the disordered poly-unsaturated lipids from the more ordered saturated ones both in the CH-stretch vibration region and in the fingerprint region, without the need for lengthy CARS multiplex acquisition and analysis. D-CARS images of the lipid droplets at few selected wavenumbers clearly resolved the lipid composition differences, and exemplify the potential of this technique for label-free chemically selective rapid imaging of cytosolic lipid droplets in living cell

    Exciton formation and relaxation in GaAs epilayers

    Get PDF
    Exciton formation and relaxation in GaAs bulk epilayers have been studied by means of time-resolved photoluminescence techniques. It is found that the time evolution of the free exciton luminescence, nonresonantly excited at low temperature and low intensity, is extremely slow, with a rise time of the order of 1 ns and a decay time of several ns. Simulations based on Monte Carlo solution of the set of coupled Boltzmann-like equations for free carriers and excitons show a nice agreement with the experimental data, and suggest a dominant role played by acoustic phonons in the exciton relaxation
    corecore