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Abstract

In this paper we study the chemical reaction of inhibition, determine the appropriate

parameter ε for the application of Tihonov’s Theorem, compute explicitly the equations

of the center manifold of the system and find sufficient conditions to guarantee that in the

phase space the curves which relate the behavior of the complexes to the substrates by

means of the tQSSA are asymptotically equivalent to the center manifold of the system.

Some numerical results are discussed.
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1. Introduction

Let us consider a reaction where a substrate S binds reversibly to an
enzyme E to form a complex C. The complex can decay irreversibly to a
product P and the enzyme, which is then free to bind another substrate
molecule. This is summarized in the scheme

(1) E + S
a−⇀↽−
d
C

k−→ E + P ,

where a, d, k are kinetic parameters (supposed constant) associated with
the reaction rates. For notational convenience we will use the same variable
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names to denote both a chemical species and its concentration. For example,
E denotes both an enzyme and its concentration.

Assuming that the complex concentration is approximately constant af-
ter a short transient phase leads to the usual standard quasi-steady-state
approximation (sQSSA)) [1], which is valid when the enzyme concentration
is much lower than either the substrate concentration or the Michaelis con-
stant KM = d+k

a . The total QSSA (tQSSA) [2,3] is another approximation,
and is valid for a broader range of parameter values covering both high and
low enzyme concentrations.

The sQSSA and tQSSA are related to the asymptotic expansion of the
solutions of the ODEs governing the process with respect to an appropriate
parameter [1,4–6]; the topic can also be read in terms of center manifold,
normal forms and bifurcation theory [7–9]. They are both developed setting
the derivative of the intermediate complexes equal to zero. The theoretical
justification for this assumption is given by Tihonov’s Theorem 2.1 [10–13].
In Tihonov’s framework, the assumption Ċi = 0 is equivalent to impose
the aforementioned “appropriate parameter” (the perturbation parameter,
usually denoted by ε) equal to zero (see, for example, [14,15].

In particular, Kumar and Josić [15] derive the mathematical expression
of the center manifold for the tQSSA system just putting ε = 0. Although
not seemingly strictly theoretically founded, this result remains as true for a
wide class of systems (including the tQSSA model) and has a mathematical
explanation, as we proved in a different paper [16]. It should be remarked
that we still lack the theoretical investigation of the validity of the tQSSA
in the case of successive reactions — where more parameters appear — but
nevertheless it can be generalized to them. In particular, Theorem 2.1, as
stated in [11], represents the generalization of Tihonov’s Theorem [10,13] to
the case of more parameters. The question is: what is the most appropriate
parameter to develop an asymptotic expansion of the solutions of the ODEs
modelling the reactions?

In a series of papers written by Palsson et al. [17] [18] [19] [20], the pos-
sibility to choose the required parameter has been related to the decoupling
of the eigenvalues of the Jacobian matrix of the differential system. In [19]
the authors focused on chains of reactions, obtaining a block form for the
resulting Jacobian matrix.

In this paper we use the techniques shown in [19] in order to determine
the appropriate parameter ε for the asymptotic expansions and give suffi-
cient conditions to guarantee that in the phase space the curves which relate
the behavior of the complexes to the substrates by means of the tQSSA are
asymptotically equivalent to the center manifold of the system.

In Section 2 we recall the most important mathematical background
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concerning Tihonov’s Theorem and Center Manifold Theory. In Section 3
we describe the mathematical model of the enzymatic inhibition reaction
and, by means of an appropriate adimensionalization, we determine a suit-
able perturbation parameter ε which will be used to apply the tQSSA, in
the framework of Tihonov’s Theorem. In Section 4 we determine the Cen-
ter Manifold of the system and discuss its asymptotic equivalence with the
tQSSA. In Section 5 some perspectives of our research are discussed.

2. Preliminary results and notations on nonlinear dynamical sys-
tems.

2.1. Singular Perturbations

For this section we will refer to the widespread book by W. Wasow [13],
and - in particular - to its relevant section on Singular Perturbations. A
systematic study of the qualitative aspects of such singular perturbation
problems can be found in a series of papers by Tihonov [10–12], written in
Russian.

According to [11], we consider c+ s-dimensional differential systems of
the form

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y),(2)

where x is c-dimensional and y is s-dimensional. All variables are real, and
ε is positive.

We assume that:

(A) The functions f and g in (2) are continuous in an open region Ω of
the (x, y)-space.

(B) There is a m-dimensional vector function φ(x) continuous in ξ1 ≤
x ≤ ξ2 such that the points (x, φ(x)), for all ξ1 ≤ x ≤ ξ2, are in Ω
and

g(x, φ(x)) ≡ 0.

(C) There exists a number η > 0, independent of x, such that the rela-
tions

‖y − φ(x)‖ < η, y 6= φ(x) in ξ1 ≤ x ≤ ξ2

imply

g(x, y) 6= 0, in ξ1 ≤ x ≤ ξ2.
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The function φ(x) will be referred to as a root of the equation g(x, y) = 0.
It is not excluded that g(x, y) = 0 may have other roots besides φ(x). A
root φ(x) that satisfies condition (C) will be called isolated in ξ1 ≤ x ≤ ξ2.

Definition 2.1. The system of differential equations

(3) ε
dy

dt
= g(x, y)

in which x is a parameter, will be called the boundary layer equation be-
longing to the system (2). We also assume:

(D) The singular point y = φ(x) of the boundary layer equation (3) is
asymptotically stable for all ξ1 ≤ x ≤ ξ2.

The root φ(x) will be called, briefly, a stable root in ξ1 ≤ x ≤ ξ2, if assump-
tion (D) is satisfied.

In accordance with our previous terminology we refer to the problem
consisting of the system (2) together with the initial condition

(4) x = α, y = β, for t = 0

as the full problem. The reduced problem is here defined by

dx

dt
= f(x, φ(x))

y = φ(x),(5)

(6) x = α, for t = 0

The system (5) is, of course, obtained by setting ε = 0 in (2) and choosing
the particular root y = φ(x) of the equation g(x, y) = 0. Moreover, we
assume:

(E) The full, as well as the reduced problem has a unique solution in an
interval 0 ≤ t ≤ T .

(F) The asymptotic stability of the singular point y = φ(x) is uniform
with respect to x in ξ1 ≤ x ≤ ξ2.

For a convenient formulation of Tihonov’s Theorem, according to [13],
we introduce one more term.

Definition 2.2. A point (α, β) ∈ Ω, ξ1 ≤ α ≤ ξ2 is said to lie in the domain
of influence of the stable root y = φ(x) if the solution of the problem

dy/dτ = g(α, y), y(0) = β

exists and remains in Ω for all τ > 0, and if it tends to φ(α), as τ → +∞.
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Theorem 2.1. Let Assumptions (A) to (F) be satisfied and let (α, β) be
a point in the domain of influence of the root y = φ(x). Then the solution
x(t, ε), y(t, ε) of the full initial value problem (2), (4) is connected with the
solution x0(t), y0(t) = φ(x0(t)) of the reduced problem (5), (6) by the limit
relations

lim
ε→0

x(t, ε) = x0(t), 0 ≤ t ≤ T0

lim
ε→0

y(t, ε) = y0(t) = φ(x0(t)) 0 < t ≤ T0(7)

Here T0 is any number such that y = φ(x0(t)) is an isolated stable root of
g (xo(t), y) = 0 for 0 ≤ t ≤ T0. The convergence is uniform in 0 ≤ t ≤ T0,
for x(t, ε), and in any interval 0 < t1 ≤ t ≤ T0 for y(t, ε).

Tihonov’s Theorem 2.1 is only the first step in the asymptotic solution of
initial value problems of the singular perturbation type. The most natural
approach to these problems is to attempt a solution in the form of a series
in powers of ε:

(8) x =
∞∑
r=0

xr(t)ε
r, y =

∞∑
r=0

yr(t)ε
r

and to determine the coefficients xr(t), yr(t) by means of formal substitution
and comparison of coefficients.

It is clear that we have to relate the series (8) to the behavior of the
solution of (2) in the boundary layer. For values of t that are small of order
O(ε) the solution to our perturbation problem can be found by means of
the stretching transformation t = τε. Hence, the stretched, or inner, form
of the original problem is

dx

dτ
= εf (x, y) ,

dy

dτ
= g (x, y) ,

x = α, y = β, for τ = 0.(9)

If the functions f and g are analytic the solutions of this problem have
convergent expansions in powers of ε, say,

(10) x(τ, ε) =

∞∑
r=0

ur(τ)εr, y(τ, ε) =
∞∑
r=0

vr(τ)εr,

and the series reduce to x = α, y = β, identically in ε, for τ = 0, so that

u0(0) = α, v0(0) = β,

ur(0) = 0, vr(0) = 0, r > 0.(11)
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If f and g are only assumed to be infinitely differentiable it is possible to
prove that the series (10) calculated by the same formal operations as in
the analytic case represent the solution asymptotically, as ε→ 0+, in every
finite τ -interval.

In this paper we consider, as in [11], the case of several parameters
{εj}mj=1 of the same order, namely, εj = ρj−1ε for each j = 1, . . . ,m and
ρj > 0 (ρ0 = 1). We obtain a system of the form

dx

dt
= f(x, y1, . . . , ym; t),

ε
dyj
dt

=
1

ρj−1
gj(x, y1, . . . , ym; t), j = 1, 2, . . . ,m,(12)

which becomes, in the vectorial form,

dx

dt
= f(x, y; t),

ε
dy

dt
= g(x, y; t),(13)

where

y = (y1, . . . , ym)t, g =

(
g1,

1

ρ1
g2, . . . ,

1

ρm−1
gm

)t
.

Then it is possible to apply, for the system (13), Tihonov’s Theorem.

2.2. Center Manifold

Let us consider vector fields of the following form

ẋ = Ax+ f(x, y),

ẏ = By + g(x, y), (x, y) ∈ Rc × Rs ,(14)

where

f(0, 0) = 0, Df(0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0 .(15)

where A is a c × c matrix having eigenvalues with zero real parts, B is an
s × s matrix having eigenvalues with negative real parts, f and g are Cr

functions (r ≥ 2) and D is the jacobian matrix of the system.

Definition 2.3 (Center Manifold [7–9,21]). An invari-
ant manifold will be called a center manifold for (14) if it can locally
be represented as follows

W c(0) = {(x, y) ∈ Rc × Rs|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0}

for δ sufficiently small.
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To find a center manifold, all we need do is to solve [8,9]:

(16) N (h(x)) ≡ Dh(x) (Ax+ f(x, h(x)))−Bh(x)− g(x, h(x)) = 0 ,

and the following theorem gives us a method for computing an approximate
solution of (16) to any desired degree of accuracy. Let us remark [8,9,21]
the non uniqueness of the center manifold.

Theorem 2.2 (Approximation [7–9]). Let φ : Rc → Rs be a C1 map-
ping with φ(0) = Dφ(0) = 0 such that N (φ(x)) = O (|x|q) as x → 0 for
some q > 1. Then

|h(x)− φ(x)| = O (|x|q) , as x→ 0.

When we consider a system depending on a parameter ε

ẋ = Ax+ f(x, y, ε),

ẏ = By + g(x, y, ε), (x, y, ε) ∈ Rc × Rs × R,(17)

where

f(0, 0, 0) = 0, Df(0, 0, 0) = 0,

g(0, 0, 0) = 0, Dg(0, 0, 0) = 0,(18)

following [8,9,21], we can handle these parameterized systems treating the
parameter ε as a new dependent variable as follows.

ẋ = Ax+ f(x, y, ε),

ε̇ = 0,

ẏ = By + g(x, y, ε), (x, y, ε) ∈ Rc × Rs × R .(19)

This system has a fixed point at (x, y, ε) = (0, 0, 0). The matrix associated
with the linearization of (19) about this fixed point has c + 1 eigenvalues
with zero real part and s eigenvalues with negative real part. Let us now
apply center manifold theory. Modifying definition 2.3, a center manifold
will be represented as a graph over the x and ε variables, i.e., the graph
of h(x, ε) for x and ε sufficiently small. Theorem 2.2 still applies, with the
vector field reduced to the center manifold given by

u̇ = Au+ f (u, h(u, ε), ε) ,

ε̇ = 0, (u, ε) ∈ Rc × R.(20)
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3. Mathematical model of the inhibition mechanism

An inhibition reaction, where an inhibitor S2 competes with a substrate
S1 for the same enzyme E, is summarized by the following scheme

(21)


E + S1

a1−⇀↽−
d1

C1
k1−→ E + P1

E + S2
a2−⇀↽−
d2

C2
k2−→ E + P2,

where P1, P2 are the reaction products and C1, C2 the enzyme-substrate
complexes. In this kind of reaction, it is clear that S1 and S2 have the same
role of reciprocal inhibitors (S1 inhibits S2 as S2 inhibits S1). Introducing
the total substrates

(22) S1 = S1 + C1, S2 = S2 + C2,

by conservation laws we have

(23) S1 + P1 = S1T , S2 + P2 = S2T , E + C1 + C2 = ET .

Then we can write the following Cauchy Problem:

(24)



dS1
dt = −k1C1

dC1
dt = a1

[
(S1 − C1)(ET − C1 − C2)−K1MC1

]
dS2
dt = −k2C2

dC2
dt = a2

[
(S2 − C2)(ET − C1 − C2)−K2MC2

]
S1(0) = S1T ; S2(0) = S2T ; C1(0) = C2(0) = 0,

where

(25) K1M =
d1 + k1

a1
, K2M =

d2 + k2

a2

are the Michaelis constants. It is easy to see that in this case the origin
X∗ := (S1

∗
, C∗1 , S2

∗
, C2) = (0, 0, 0, 0) is the only fixed point of the system.

The linear approximation of the system around X∗ is represented by the
following system:

(26)


dS1
dt = −k1C1

dC1
dt = a1

[
ETS1 − ETC1 −K1MC1

]
dS2
dt = −k2C2

dC2
dt = a2

[
ETS2 − ETC2 −K2MC2

]
,

88



Tihonov theory in inhibitory reactions.

with Jacobian at the origin

(27) D(0, 0, 0, 0) =


0 −k1 0 0

a1ET −a1(ET +K1M ) 0 0
0 0 0 −k2

0 0 a2ET −a2(ET +K2M )

 ,

with two blocks. An easy computation shows that

|D − λI| =
[
λ2 + a1(ET +K1M )λ+ k1a1ET

] [
λ2+

+a1(ET +K2M )λ+ k2a2ET ] ,

then the eigenvalues are

(λ±)i =
−ai(ET +KiM )±

√
a2
i (ET +KiM )2 − 4aikiET

2
=

(28)
ai(ET +KiM )

2

(
−1±

√
1− 4KiET

(ET +KiM )2

)
,

where we have denoted the Van Slyke-Cullen constants by Ki = ki
ai

, i = 1, 2.
Now it is clear that

(29)
4KiET

ET +KiM
� 1 =⇒ (λ−)i � (λ+)i,

i = 1, 2, i.e., according to Palsson [19], we have a sufficient condition for
the separation of time scales.

We could choose

ε̃i :=
KiET

(ET +KiM )2
,

as perturbation parameter. It easy to show that ε̃i <
1
4 for every choice of

data. However, in order to follow the paper [6], it is more convenient to
take

(30) ε = max{εi :=
KiET

(ET +KiM + SiT )2
; i = 1, 2} < 1

4

as perturbation parameter (note that εi < ε̃i). Furthermore, thanks to the
symmetry of the problem, we can suppose that ε = ε1. With this choice the
following change of variables

Si = αisi, Ci = βici, t = γτ,
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with

(31) αi = SiT , βi =
ETSiT

ET +KiM + SiM
, γ =

1

a1(ET +K1M + S1M )
,

i = 1, 2, provides an adimensionalization of the model equations (see [6]):

(32)



α1
γ
ds1
dτ = −k1β1c1

β1
γ
dc1
dτ = a1

[
β2

1c
2
1 − (ET + α1s1 − β2c2 +K1M )β1c1+

−α1s1β2c2 + α1s1ET ]
α2
γ
ds2
dτ = −k2β2c2

β2
γ
dc2
dτ = a2

[
β2

2c
2
2 − (ET + α2s2 − β1c1 +K2M )β2c2+

−α2s2β1c1 + α2s2ET ]

thanks to which we obtain the system of equations for the inner solutions:

(33)



ds1
dτ = −εc1

dc1
dτ = σ1η1c

2
1 − (η1 + κ1M )c1 − σ1s1c1 + σ2η1c1c2 + s1 − σ2c2s1

ds2
dτ = −εk2η2k1η1

c2

dc2
dτ = a2

a1

[
η1σ2c

2
2 −

(
η1 + K2M

K1M
κ1M

)
c2+

+
(
η1σ1c1 − S2T

S1T
σ1s2

)
c2 + η1

η2
s2 − σ1η1

η2
s2c1

]
where

σi =
SiT

ET +KiT + SiT
; ηi =

ET
ET +KiT + SiT

; κiM =
KiM

ET +KiT + SiT

i = 1, 2 (note that σi+ηi+κiM = 1). We now write the system of equations
that gives the outer solutions. To this aim we set

(34) γ :=
1

k1η1

and note that putting T = t
γ , we see that

T =
γ

γ
τ = ετ.

So we obtain

(35)



ds1
dT = −c1

εdc1dT = σ1η1c
2
1 − (η1 + κ1M )c1 − σ1s1c1 + σ2η1c1c2 + s1 − σ2c2s1

ds2
dT = −k2η2

k1η1
c2

εdc2dT = a2
a1

[
η1σ2c

2
2 −

(
η1 + K2M

K1M
κ1M

)
c2+

+
(
η1σ1c1 − S2T

S1T
σ1s2

)
c2 + η1

η2
s2 − σ1η1

η2
s2c1

]
.
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At this point we can apply Tihonov’s Theorem. Putting ε = 0, we obtain
the reduced system of equations, a system which is both of differential and
algebraic type:

(36)



ds1
dT = −c1

σ1η1c
2
1 − (η1 + κ1M )c1 − σ2c2s1 − σ1s1c1 + σ2η1c1c2 + s1 = 0

ds2
dT = −k2η2

k1η1
c2

η1σ2c
2
2 −

(
η1 + K2M

K1M
κ1M

)
c2 − σ1η1

η2
s2c1+

+
(
η1σ1c1 − S2T

S1T
σ1s2

)
c2 + η1

η2
s2 = 0

From the algebraic equations we can obtain cumbersome expressions for
c1(s1, s2) and c2(s1, s2), which are useful for the numerical integration of
the differential equations.

For the sake of clarity we prefer here to show the reverse relations:

(37) s1 =
σ1η1c

2
1 − (η1 + κ1M )c1 + σ2η1c1c2

(σ1c1 − σ2c2 − 1)

(38) s2 =
η1σ2c

2
2 −

(
η1 + K2M

K1M
κ1M

)
c2 + η1σ1c1c2(

S2T
S1T

σ1c2 − η1
η2
σ1c1 − η1

η2

) .

Figure 1 compares the time behavior of the complexes (left) and of the
substrates (right), respectively, obtained as numerical solutions of the sys-
tem (35) and of their tQSSA (36), in a case where the parameter values are
chosen is such a way to obtain a small value of the perturbation parameter
(ε = 0.02).

Figure 2 compares the time behavior of the complexes (left) and of the
substrates (right), respectively, obtained as numerical solutions of the sys-
tem (35) and of their tQSSA (36), in a case where the parameter values are
chosen is such a way to obtain a high value of the perturbation parameter
(ε = 0.23), very close to its upper bound.

The figures show a very good approximation, even in the stressed case,
in accordance with Tihonov’s Theorem.
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Figure 1. Comparison of the complexes (left) and of the substrates (right), solution of
the system (35), with their tQSSA (36). The parameter set is the following: for the first
reaction a1 = k1 = 1; d1 = 0.1;ET = 0.1;S1T = 1;K1M = 1.1;K = 1; ε1 = 0.02; for the
second reaction a2 = 0.1; k2 = 10; d2 = 0.01;ET = 0.1;S2T = 50;K2M = 100.1;K =
100; ε2 = 0.00044. Thus ε = 0.02.
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Figure 2. Comparison of the complexes (left) and of the substrates (right), solution of
the system (35), with their tQSSA (36). The parameter set is the following: for the first
reaction a1 = k1 = 1; d1 = 0.1;ET = 1;S1T = 0.1;K1M = 1.1;K = 1; ε1 = 0.23; for the
second reaction a2 = k2 = 1; d2 = 3;ET = 1;S2T = 1;K2M = 4;K = 1; ε2 = 0.03. Thus
ε = ε1 = 0.23. Though the value of ε is very close to its bound 1/4, the approximation is
sufficiently satisfactory.

4. The Center Manifold

Let us start again from (33):

(39)



ds̄1
dτ = −εc1 ,
dc1
dτ = − (η1 + κ1M ) c1 + s̄1 + σ1η1c

2
1+

−s̄1 (σ2c2 + σ1c1) + σ2η1c1c2 ,
ds̄2
dτ = −εc2

k2
k1
η2
η1
,

dc2
dτ = a2

a1

[
−
(
η1 + K2M

K1M
κ1M

)
c2 + η1

η2
s̄2

]
+

+a2
a1

[
η1σ2c

2
2 − σ1

η1
η2
s̄2c1 − S2T

S1T
σ1s̄2c2 + σ1η1c1c2

]
.
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The origin (0, 0, 0, 0) is a fixed point of the system (39).
We rewrite (39) in the form (14) and, to this aim, we operate the sub-

stitutions

(40) y1 = − (η1 + κ1M ) c1 + s̄1 ⇔ c1 =
s̄1 − y1

η1 + κ1M

and

(41) y2 = −
(
η1 +

K2M

K1M
κ1M

)
c2 +

η1

η2
s̄2 ⇔ c2 =

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

.

From (40) and (41) we have the new equations for y1 and y2:

dy1

dτ
=
ds̄1

dτ
− (η1 + κ1M )

dc1

dτ
= −ε s̄1 − y1

η1 + κ1M
+(42)

− (η1 + κ1M )

[
y1 + σ1η1

(
s̄1 − y1

η1 + κ1M

)2

− s̄1

(
σ2

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

+

+σ1
s̄1 − y1

η1 + κ1M

)
+ σ2η1

(s̄1 − y1)
(
η1
η2
s̄2 − y2

)
(η1 + κ1M )

(
η1 + K2M

K1M
κ1M

)
 .

dy2

dτ
=
η1

η2

ds̄2

dτ
−
(
η1 +

K2M

K1M
κ1M

)
dc2

dτ
= −k2

k1
ε

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

+(43)

−
(
η1 +

K2M

K1M
κ1M

)a2

a1
y2 +

a2

a1
η1σ2

(
η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

)2

+

− a2

a1
σ1
η1

η2
s̄2

s̄1 − y1

η1 + κ1M
− a2

a1

S2T

S1T
σ1s̄2

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

+

+
a2

a1
σ1η1

s̄1 − y1

η1 + κ1M

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

]
.

By combining equations (42) and (43) with those in dc1
dτ and dc2

dτ – where
c1, c2 are replaced by (40), (41) – and applying the technique described
in [8,9,21], the system (39) becomes

(44)



ds̄1
dτ = −ε s̄1−y1

η1+κ1M
,

ds̄2
dτ = −k2

k1
η2
η1
ε

η1
η2
s̄2−y2

η1+
K2M
K1M

κ1M
,

dy1
dτ = − (η1 + κ1M ) y1 + f1(s̄1, s̄2, y1, y2, ε) ,
dy2
dτ = −a2

a1

(
η1 + K2M

K1M
κ1M

)
y2 + f2(s̄1, s̄2, y1, y2, ε) ,

dε
dτ = 0 ,
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where we have isolated the linear part in (s̄1, s̄2, y1, y2, ε) and

f1(s̄1, s̄2, y1, y2, ε) := −ε s̄1 − y1

η1 + κ1M
− σ1η1

(s̄1 − y1)2

η1 + κ1M
+(45)

+ (η1 + κ1M )σ2

s̄1

(
η1
η2
s̄2 − y2

)
η1 + K2M

K1M
κ1M

+ σ1 s̄1(s̄1 − y1)+

− σ2η1

(s̄1 − y1)
(
η1
η2
s̄2 − y2

)
η1 + K2M

K1M
κ1M

,

and

f2(s̄1, s̄2, y1, y2, ε) := −k2

k1
ε

η1
η2
s̄2 − y2

η1 + K2M
K1M

κ1M

− a2

a1
η1σ2

(
η1
η2
s̄2 − y2

)2

η1 + K2M
K1M

κ1M

+(46)

+

(
η1 +

K2M

K1M
κ1M

)
a2

a1
σ1
η1

η2

s̄2(s̄1 − y1)

η1 + κ1M
+

+
a2

a1

S2T

S1T
σ1s̄2

(
η1

η2
s̄2 − y2

)
− a2

a1
σ1η1

(s̄1 − y1)
(
η1
η2
s̄2 − y2

)
η1 + κ1M

.

(From here on out we will adopt the notation dy
dτ = ẏ.)

Considering the equilibrium point (0, 0, 0, 0, 0), the associated linearized
system has a diagonal form and, moreover, the eigenvalues are given by 0
(with multiplicity c = 3) and

(47) λ1 = − (η1 + κ1M ) , λ2 = −a2

a1

(
η1 +

K2M

K1M
κ1M

)
.

All the eigenvalues are ≤ 0. To find a center manifold, all we need to do
is to solve (16) for system (44), employing Theorem 2.2, which gives us
a method for computing an approximate solution of (16) to any desired
degree of accuracy. So we search for a function h(x, ε) – where h : R3 → R2

and x = (s̄1, s̄2) – such that

h(x, ε) =

(
h1(x, ε)
h2(x, ε)

)
and

(48) h1(s̄1, s̄2, ε) = α1s̄
2
1 + α2s̄

2
2 + α3ε

2 + α4s̄1s̄2 + α5s̄1ε+ α6s̄2ε+ . . .

(49) h2(s̄1, s̄2, ε) = β1s̄
2
1 + β2s̄

2
2 + β3ε

2 + β4s̄1s̄2 + β5s̄1ε+ β6s̄2ε+ . . . .
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Hence, by Definition 2.3, the center manifold is:

(50) F :=

(
y1(x, ε)
y2(x, ε)

)
=

(
h1(x, ε)
h2(x, ε)

)
.

Let ξ = (s̄1, s̄2, ε), we have that, from (48), (49) and (50):

f1(s̄1, s̄2, ε) = − s̄1ε

η1 + κ1M
− σ1η1s̄

2
1

η1 + κ1M
+(51)

+

η1
η2
σ2 (η1 + κ1M ) s̄1s̄2

η1 + K2M
K1M

κ1M

+ σ1 s̄
2
1 −

η21
η2
σ2 s̄1s̄2

η1 + K2M
K1M

κ1M

+ o
(
|ξ|2
)
,

f2(s̄1, s̄2, ε) = −
k2
k1
η1
η2
s̄2ε

η1 + K2M
K1M

κ1M

−
a2
a1

η31
η22
σ2s̄

2
2

η1 + K2M
K1M

κ1M

+(52)

+

(
η1 +

K2M

K1M
κ1M

)
a2

a1

η1

η2
σ1

s̄1s̄2

η1 + κ1M
+
a2

a1

η1

η2

S2T

S1T
σ1s̄

2
2+

− a2

a1
σ1

η21
η2
s̄1s̄2

η1 + κ1M
+ o

(
|ξ|2
)
.

for ξ → 0.
By definition of center manifold and from (47), we calculate

(53) ẏ1 = Dxh1(x, ε)ẋ+Dεh1(x, ε) ε̇︸︷︷︸
=0

= λ1y1 + f1(x, y1, y2)

and

(54) ẏ2 = Dxh2(x, ε)ẋ+Dεh2(x, ε) ε̇︸︷︷︸
=0

= λ2y2 + f2(x, y1, y2) ,

which are a consequence of (16).
We start from (53). It can be shown that

Dxh1(x, ε)ẋ =
∂h1

∂s̄1

˙̄s1 +
∂h1

∂s̄2

˙̄s2 = o
(
|ξ|2
)

for ξ → 0, then (53) becomes

(55) λ1y1 + f1(x, y1, y2) = o
(
|ξ|2
)
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or, from (48), (49),(50) and more explicitly:

− (η1 + κ1M )
(
α1s̄

2
1 + α2s̄

2
2 + α3ε

2 + α4s̄1s̄2 + α5s̄1ε+

+α6s̄2ε+ o
(
|ξ|2
))
− s̄1ε

η1 + κ1M
− σ1η1s̄

2
1

η1 + κ1M
+

+

η1
η2
σ2 (η1 + κ1M ) s̄1s̄2

η1 + K2M
K1M

κ1M

+ σ1 s̄
2
1 −

η21
η2
σ2 s̄1s̄2

η1 + K2M
K1M

κ1M

+ o
(
|ξ|2
)

= o
(
|ξ|2
)
.

Equating to zero terms of the same powers gives α2 = α3 = α6 = 0 and:

− (η1 + κ1M )α1 −
σ1η1

η1 + κ1M
+ σ1 = 0

− (η1 + κ1M )α4 +

η1
η2
σ2 (η1 + κ1M )

η1 + K2M
K1M

κ1M

−
η21
η2
σ2

η1 + K2M
K1M

κ1M

= 0

(η1 + κ1M )α5 +
1

η1 + κ1M
= 0 ,

from which
(56)

α1 =
κ1Mσ1

(η1 + κ1M )2 ; α4 =

η1
η2
σ2κ1M

(η1 + κ1M )
(
η1 + K2M

K1M
κ1M

) ; α5 = − 1

(η1 + κ1M )2 .

Similar argumentations can be used to handle (54). At the end, we
obtain the center manifold of (44)

y1(s̄1, s̄2, ε) = h1(s̄1, s̄2, ε) =
κ1Mσ1

(η1 + κ1M )2 s̄
2
1+(57)

+

η1
η2
σ2κ1M

(η1 + κ1M )
(
η1 + K2M

K1M
κ1M

) s̄1s̄2 −
1

(η1 + κ1M )2 s̄1ε+ o
(
|ξ|2
)
.

y2(s̄1, s̄2, ε) = h2(s̄1, s̄2, ε) =
η1

η2

S2T
S1T

σ1

(
η1 + K2M

K1M
κ1M

)
− η21

η2
σ2(

η1 + K2M
K1M

κ1M

)2 s̄2
2+

(58)

+

η1
η2
σ1

K2M
K1M

κ1M(
η1 + K2M

K1M
κ1M

)
(η1 + κ1M )

s̄1s̄2 −
a1
a2
k2
k1
η1
η2(

η1 + K2M
K1M

κ1M

)2 s̄2ε+ o
(
|ξ|2
)
.
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Figures 3 and 4 show the behavior of the center manifold and of the tra-
jectories of the solutions and their tQSSAs in the phase space ((s̄1, s̄2, c1)
on the left and (s̄1, s̄2, c2) on the right), for ε = 0.23. In Figure 4 we have
rotated the center manifold, in order to show more clearly the asymptotic
equivalence of the manifold and of the trajectories. While in the plots on the
left we can observe that the trajectories of the points (s̄1, s̄2, c1) are asymp-
totically equivalent to the center manifold, as expected from the theory, in
the plots on the right the comparison is absolutely unsatisfactory.

In [16] it was shown that for a single enzyme reaction the tQSSA is
asymptotically equivalent to the center manifold of the system. For more
complex reactions we still lack a mathematical justification of this fact
which, however, seems to be a reasonable result, confirmed by the plots on
the left.

We can however explain the apparently contradictory behavior in the
plots on the right with the fact that in this case the value of ε is not
sufficiently small to guarantee the applicability of the theory.

Presumably, the computation of corrections of higher order in ε could
improve our results.

5. Conclusion and perspectives

In this paper we have applied Palsson theory related to the separa-
tion of time scales in linear enzyme reactions to the case of the inhibition
mechanism. We were able to state sufficient conditions for the separation of
variables in this case, too, determining an appropriate perturbation param-
eter ε, which becomes crucial for the application of Tihonov’s Theorem. We
have also explicitly computed the center manifold for this kind of systems
and compared it with the trajectories of the solutions and of their tQSSAs.
We observed that, even for high values of ε, the tQSSA well approximates
the solution of the differential system governing the reactions. We related
this fact to the consideration that the tQSSA can be seen as the applica-
tion, under suitable hypotheses, of Tihonov theory for differential systems
characterized by the presence of small parameters. As already observed in
other papers (see, for example, [1,4–6]), any QSSA can be interpreted as
the leading order term of an asymptotic expansion of the solutions with
respect of an appropriate parameter. The unsatisfactory behavior of the
center manifold and of the tQSSA with respect to the solution of the dif-
ferential system can be corrected determining the successive terms at order
ε. This will be subject of a future work. We will also study the bifurcation
analysis of the differential system associated to the inhibition mechanism.

Palsson theory seems very promising in order to handle more complex
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Figure 3. Comparison among the behavior of the center manifold, the trajectory of the
solutions of the system (24) and of their tQSSAs for (s̄1, s̄2, c1) (left) and (s̄1, s̄2, c2)
(right), in the stressed case ε = 0.23. The center manifold is here clearly shown.

mechanisms by means of Tihonov theory and Center Manifold Theory. In
a work in preparation, we are trying to apply these techniques to several
mechanisms of phosphorylation and dephosphorylation, including cycles of
single and double phosphorylation.
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Figure 4. Comparison among the behavior of the center manifold, the trajectory of the
solutions of the system (24) and of their tQSSAs for (s̄1, s̄2, c1) (left) and (s̄1, s̄2, c2)
(right), in the stressed case ε = 0.23. The plots are here rotated in order to show more
clearly the trajectories. While in the plot on the left we can appreciate the convergence
of the trajectories to the center manifold, in the plot on the right there are evident
differences, which can be explained with the high value of the parameter ε.
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