71 research outputs found

    Two major groups of chloroplast DNA haplotypes in diploid and tetraploid Aconitum subgen : Aconitum (Ranunculaceae) in the Carpathians

    Get PDF
    Aconitum in Europe is represented by ca. 10% of the total number of species and the Carpathian Mts. are the center of the genus variability in the subcontinent. We studied the chloroplast DNA intergenic spacer trnL(UAG)-rpl32-ndhF (cpDNA) variability of the Aconitum subgen. Aconitum in the Carpathians: diploids (2n=16, sect. Cammarum), tetraploids (2n=32, sect. Aconitum) and triploids (2n=24, nothosect. Acomarum). Altogether 25 Aconitum accessions representing the whole taxonomic variability of the subgenus were sequenced and subjected to phylogenetic analyses. Both parsimony, Bayesian and character network analyses showed the two distinct types of the cpDNA chloroplast, one typical of the diploid and the second of the tetraploid groups. Some specimens had identical cpDNA sequences (haplotypes) and scattered across the whole mountain arch. In the sect. Aconitum 9 specimens shared one haplotype, while in the sect. Camarum one haplotype represents 4 accessions and the second –accessions. The diploids and tetraploids were diverged by 6 mutations, while the intrasectional variability amounted maximally to 3 polymorphisms. Taking into consideration different types of cpDNA haplotypes and ecological profiles of the sections (tetraploids – high-mountain species, diploids – species from forest montane belt) we speculate on the different and independent history of the sections in the Carpathians

    Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs

    Get PDF
    International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees

    Climate, host and geography shape insect and fungal communities of trees

    Get PDF
    13 Pág.Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.We gratefully acknowledge the financial support of the Swiss National Science Foundation (Project C15.0081) Grant 174644 and the Swiss Federal Office for the Environment Grant 00.0418.PZ/P193-1077. This work was supported by COST Action “Global Warning” (FP1401). CABI is an international intergovernmental organisation, and R.E., M.K., H.L. and I.F. gratefully acknowledge the core financial support from our member countries (and lead agencies) including the United Kingdom (Foreign, Commonwealth and Development Office), China (Chinese Ministry of Agriculture and Rural Affairs), Australia (Australian Centre for International Agricultural Research), Canada (Agriculture and Agri-Food Canada), Netherlands (Directorate General for International Cooperation), and Switzerland (Swiss Agency for Development and Cooperation). See https://www.cabi.org/aboutcabi/who-we-work-with/key-donors/ for full details. M.B. and M.K.H. were financially supported by the Slovak Research and Development Agency (Project APVV-19-0116). H.B. would like to thank the botanist Jorge Capelo who helped with Myrtaceae identification and INIAV IP for supporting her contribution to this study. Contributions of M. de G. and B.P. were financed through Slovenian Research Agency (P4-0107) and by the Slovenian Ministry of Agriculture, Forestry and Food (Public Forestry Service). G.C, C.B.E. and A.F.M. were supported by OTKA 128008 research grant provided by the National Research, Development and Innovation Office. Contributions of K.A. and R.D. were supported by the Estonian Research Council grants PSG136 and PRG1615. M.J.J., C.L.M. and H.P.R. were financially supported by the 15. Juni Fonden (Grant 2017-N-123). P.B., B.G. and M.Ka. were financially supported by the Ministry of Science and Higher Education of the Republic of Poland for the University of Agriculture in Krakow (SUB/040013-D019). C.N. was financially supported by the Slovak Research and Development Agency (Grant APVV-15-0531). N.K. was partially supported by the Russian Science Foundation (grant № 22-16-00075) [species identification] and the basic project of Sukachev Institute of Forest SB RAS (№ FWES-2021-0011) [data analysis]. R.OH. was supported by funding from DAERA, and assistance from David Craig, AFBI. T.P. thanks the South African Department of Forestry, Fisheries and the Environment (DFFE) for funding noting that this publication does not necessarily represent the views or opinions of DFFE or its employees. In preparing the publication, materials of the bioresource scientific collection of the CSBG SB RAS “Collections of living plants indoors and outdoors” USU_440534 (Novosibirsk, Russia) were used. M.Z. was financially supported by Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract no. 451-03-47/2023-01/200197). We acknowledge the Genetic Diversity Centre (GDC) at ETH Zurich for providing computational infrastructure and acknowledge the contribution of McGill University and Génome Québec Innovation Center (Montréal, Quebec, Canada) for pair-end sequencing on Illumina MiSeq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation

    Full text link

    The effect of the selected heavy metals on the growth and proliferation of Streptomyces spp. isolated from soils

    No full text
    Mając na uwadze wzrost zanieczyszczenia środowiska naturalnego metalami ciężkimi i ich oddziaływanie na mikroorganizmy w glebie, podjęto próbę określenia wpływu wybranych metali ciężkich: miedzi, kadmu, cynku i ołowiu na wzrost promieniowców wyizolowanych z gleb pobranych z terenu huty ArcelorMittal w Krakowie. Do badań wykorzystano 5 gleb, z których do dalszych badań wyselekcjonowano 10 izolatów promieniowców należących do rodzaju Streptomyces. Przeprowadzone analizy wykazały, że obecność huty przyczynia się do zanieczyszczenia środowiska glebowego poprzez emisje metali ciężkich. Ma to wpływ także na populację promieniowców w glebie nie tylko poprzez ograniczenie ich liczebności, lecz również poprzez selekcję szczepów opornych na zanieczyszczenia gleb, a przez to na ograniczenie ich bioróżnorodności. Pośrednim skutkiem ograniczenia różnorodności promieniowców może być wyginięcie szczepów ważnych pod względem funkcjonalnym dla środowiska, zubożenie mikroflory gleby, a także zmiany właściwości fizykochemicznych gleby. Niniejsza praca pokazuje, że skażenie środowiska metalami ciężkimi jest poważnym problemem środowiskowym. Zjawisko to należy monitorować i kontrolować, aby zapobiec nieodwracalnym zmianom w ekosystemie.People have changed their environment since the beginning of the civilization - it is an inevitable process. However, this phenomenon is accompanied by emission of many harmful chemicals to the environment, and recently there has been an increase in the amount of pollution. Having regard to the increase in environmental contamination with heavy metals due to the expanding industry and its impact on soil microorganisms, this study attempted to determine the effect of the selected heavy metals: cadmium, copper, lead and zinc, on the growth of actinobacteria (belonging to the genus Streptomyces) isolated from soils of ArcelorMittal steelworks in Cracow. Five soil samples were selected for the analysis, from which 2 isolates of Streptomyces spp. were selected for further analyses. The number of Streptomyces spp. in the soil samples was determined using the serial dilutions method. The systematic affiliation of microorganisms was confirmed by macroscopic as well as microscopic observations of Gram-stained smears, catalase reaction test and the sequencing of 16S rDNA region. Additionally, soil physical and chemical properties were examined - pH, moisture and heavy metal content - using atomic spectrometry. The heavy metal resistance of the examined Streptomyces spp. strains was analyzed using a well method with increasing concentrations of cadmium, copper, lead and zinc. After the incubation results were recorded as the growth inhibition zones (diameters) and the minimum inhibitory concentration (MIC) of the heavy metals were determined. The conducted analyses revealed that heavy metal concentrations in two out of five examined soils exceeded the admissible values given by the Regulation of the Minister of Environment on soil quality standards. The number of actinobacteria in soils was varied (from 6700 to almost 250 thousand CFU per gram of soil dry weight). There was a negative correlation between the heavy metal concentrations in soils and the number of the studied microorganisms. The analyzed soils were alkaline - the lowest pH value was 7.7. Regarding the heavy metal resistance of the analyzed Streptomyces spp. strains, diverse in vitro susceptibility was recorded. The bacterial reactions differed even between strains isolated from the same soil samples. Minimum inhibitory concentrations of the examined heavy metals were as follows: Cd and Cu - 100 μg • cm−3, Zn - 3000 μg • cm−3 and Pb - 8000 μg • cm−3. There was a negative correlation between the concentration of heavy metals in soils and the growth inhibition zones (in the case of cadmium this correlation was high), indicating that the soil contamination with cadmium may have modified the soil population of Streptomyces spp., causing extinction of the susceptible strains while the ones with reduced sensitivity survived. The results of the presented research indicated that the ArcelorMittal steelworks contaminates the soil environment, which may affect the microbial community of soils, not only by reducing the population, but also by decreasing biodiversity of soil microorganisms, which was particularly visible in the case of cadmium - a strongly toxic heavy metal. This study demonstrates that the heavy metal contamination is a serious environmental problem. This phenomenon needs to be monitored and controlled to prevent irreversible changes to the ecosystem
    corecore