3,297 research outputs found

    Stellar haloes in Milky-Way mass galaxies: From the inner to the outer haloes

    Full text link
    We present a comprehensive study of the chemical properties of the stellar haloes of Milky-Way mass galaxies, analysing the transition between the inner to the outer haloes. We find the transition radius between the relative dominance of the inner-halo and outer-halo stellar populations to be ~15-20 kpc for most of our haloes, similar to that inferred for the Milky Way from recent observations. While the number density of stars in the simulated inner-halo populations decreases rapidly with distance, the outer-halo populations contribute about 20-40 per cent in the fiducial solar neighborhood, in particular at the lowest metallicities. We have determined [Fe/H] profiles for our simulated haloes; they exhibit flat or mild gradients, in the range [-0.002, -0.01 ] dex/kpc. The metallicity distribution functions exhibit different features, reflecting the different assembly history of the individual stellar haloes. We find that stellar haloes formed with larger contributions from massive subgalactic systems have steeper metallicity gradients. Very metal-poor stars are mainly contributed to the halo systems by lower-mass satellites. There is a clear trend among the predicted metallicity distribution functions that a higher fraction of low-metallicity stars are found with increasing radius. These properties are consistent with the range of behaviours observed for stellar haloes of nearby galaxies.Comment: 11 pages, 6 figures. Accepted MNRAS. Revised version after referee's comment

    A Search for Stars of Very Low Metal Abundance. V. Photoelectric UBV Photometry of Metal-Weak Candidates from the Northern HK Survey

    Full text link
    We report photoelectric UBV data for 268 metal-poor candidates chosen from the northern HK objective-prism/interference-filter survey of Beers and colleagues. Over 40 % of the stars have been observed on more than one night, and most have at least several sets of photometric measurements. Reddening estimates, preliminary spectroscopic measurements of abundance, and type classifications are reported.Comment: To Appear in the Astronomical Journal, October 200

    On the origin of HE0107-5240, the most iron deficient star presently known

    Full text link
    We show that the "puzzling" chemical composition observed in the extremely metal poor star HE0107-5240 may be naturally explained by the concurrent pollution of at least two supernovae. In the simplest possible model a supernova of quite low mass (~15 Msun), underwent a "normal" explosion and ejected ~0.06 Msun of 56Ni while a second one was massive enough (~35 Msun) to experience a strong fall back that locked in a compact remnant all the carbon-oxygen core. In a more general scenario, the pristine gas clouds were polluted by one or more supernovae of relatively low mass (less than ~25 Msun). The successive explosion of a quite massive star experiencing an extended fall back would have largely raised the abundances of the light elements in its close neighborhood.Comment: 10 pages; 3 figures; accepted for publication in the The Astrophysical Journal Letter

    Analysis of Spectral Bands in Comparing Different Multispectral Scanners

    Get PDF

    Investigation of Smart Responses of Human Serum Albumin in Fever Condition: An In Vitro Approach

    Get PDF
    To move real objects, our hand needs to get in direct physical contact with the object. However, this is not necessarily the case when interacting with virtual objects, for example when displacing objects on tablets by swipe movements. Here, we performed two experiments to study the behavioral strategies of these movements, examining how visual information about the virtual object is mapped into a swipe that moves the object into a goal location. In the first experiment, we investigated how swiping behavior depends on whether objects were located within or outside the swiping workspace. Results show that participants do not start the swipe movement by placing their finger on the virtual object, as they do when reaching to real objects, but rather keep a systematic distance between the object location and the initial swipe location. This mismatch, which was experimentally imposed by placing the object outside the workspace, also occurred when the object was within the workspace. In the second experiment, we investigated which factors determine this mismatch by systematically manipulating the initial hand location, the location of the object and the location of the goal. Dimensionality reduction of the data showed that three factors are taken into account when participants choose the initial swipe location: the expected total movement distance, the distance between their finger on the screen and the object, and a preference not to cover the object. The weight given to each factor differed among individuals. These results delineate, for the first time, the flexibility of visuomotor associations in the virtual world

    Chemical abundances of the metal-poor horizontal-branch stars CS 22186-005 and CS 30344-033

    Full text link
    We report on a chemical-abundance analysis of two very metal-poor horizontal-branch stars in the Milky Way halo: CS 22186-005 ([Fe/H]=-2.70) and CS 30344-033 ([Fe/H]=-2.90). The analysis is based on high-resolution spectra obtained at ESO, with the spectrographs HARPS at the 3.6 m telescope, and UVES at the VLT. We adopted one-dimensional, plane-parallel model atmospheres assuming local thermodynamic equilibrium. We derived elemental abundances for 13 elements for CS 22186-005 and 14 elements for CS 30344-033. This study is the first abundance analysis of CS 30344-033. CS 22186-005 has been analyzed previously, but we report here the first measurement of nickel (Ni; Z = 28) for this star, based on twenty-two NiI lines ([Ni/Fe]=-0.21±\pm0.02); the measurement is significantly below the mean found for most metal-poor stars. Differences of up to 0.5 dex in [Ni/Fe] ratios were determined by different authors for the same type of stars in the literature, which means that it is not yet possible to conclude that there is a real intrinsic scatter in the [Ni/Fe] ratios. For the other elements for which we obtained estimates, the abundance patterns in these two stars match the Galactic trends defined by giant and turnoff stars well. This confirms the value of horizontal-branch stars as tracers of the chemical properties of stellar populations in the Galaxy. Our radial velocities measurements for CS 22186-005 differ from previously published measurements by more than the expected statistical errors. More measurements of the radial velocity of this star are encouraged to confirm or refute its radial velocity variability

    Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032

    Full text link
    We report high-resolution, high-signal-to-noise, observations of the extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system has a long period : P = 424.7 ±\pm 0.6 days. It comprises two main sequence stars having effective temperatures 6300 K and 5600 K, with a ratio of secondary to primary mass of 0.89 ±\pm 0.04. The metallicity of the system is [Fe/H] = -3.71 ±\pm 0.11 ±\pm 0.12 (random and systematic errors) -- somewhat higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements might have been underproduced relative to Mg in the material from which this object formed. In the context of the hypothesis that the abundance patterns of extremely metal-poor stars are driven by individual enrichment events and the models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent with its having been enriched by a zero-metallicity supernova of mass 30 M_{\odot}. As the most metal-poor near-main-sequence-turnoff star currently known, the primary of the system has the potential to strongly constrain the primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03 ±\pm 0.07, which is consistent with the finding of Ryan et al. (1999) that for stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical Journal, Sept. 1, 2000 issu

    Chronography of the Milky Way's Halo System with Field Blue Horizontal-Branch Stars

    Get PDF
    In a pioneering effort, Preston et al. reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first "chronographic map" of the halo of the Galaxy. We demonstrate that the mean de-reddened g-r color, , increases outward in the Galaxy from -0.22 to -0.08 (over a color window spanning [-0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this central region, the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.Comment: 6 pages, 4 figures, ApJ letter

    Lead abundance in the uranium star CS 31082-001

    Full text link
    In a previous paper we were able to measure the abundance of uranium and thorium in the very-metal poor halo giant BPS CS 31082-001, but only obtained an upper limit for the abundance of lead (Pb). We have got from ESO 17 hours of additional exposure on this star in order to secure a detection of the minimum amount of lead expected to be present in CS 31082-001, the amount arising from the decay of the original content of Th and U in the star. We report here this successful detection. We find an LTE abundance log(Pb/H)+12=-0.55 \pm 0.15 dex, one dex below the upper limits given by other authors for the similar stars CS 22892-052 and BD +17d3248, also enhanced in r-process elements. From the observed present abundances of Th and U in the star, the expected amount of Pb produced by the decay of 232Th, and 238U alone, over 12-15 Gyr is -0.73\pm 0.17 dex. The decay of 235U is more difficult to estimate, but is probably slightly below the contribution of 238U, making the contribution of the 3 actinides only slightly below, or even equal to, the measured abundance. The contribution from the decay of 234U has was not included, for lack of published data. In this sense our determination is a lower limit to the contribution of actinides to lead production. We comment this result, and we note that if a NLTE analysis, not yet possible, doubles our observed abundance, the decay of the 3 actinides will still represent 50 per cent of the total lead, a proportion higher than the values considered so far in the literature.Comment: 4 pages, LateX, A&A Letters Accepte
    corecore