3,519 research outputs found

    Distribution of periodic points of polynomial diffeomorphisms of C^2

    Full text link
    This paper deals with the dynamics of a simple family of holomorphic diffeomorphisms of \C^2: the polynomial automorphisms. This family of maps has been studied by a number of authors. We refer to [BLS] for a general introduction to this class of dynamical systems. An interesting object from the point of view of potential theory is the equilibrium measure μ\mu of the set KK of points with bounded orbits. In [BLS] μ\mu is also characterized dynamically as the unique measure of maximal entropy. Thus μ\mu is also an equilibrium measure from the point of view of the thermodynamical formalism. In the present paper we give another dynamical interpretation of μ\mu as the limit distribution of the periodic points of ff

    Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents

    Full text link
    This paper concerns the dynamics of polynomial automorphisms of C2{\bf C}^2. One can associate to such an automorphism two currents μ±\mu^\pm and the equilibrium measure μ=μ+μ\mu=\mu^+\wedge\mu^-. In this paper we study some geometric and dynamical properties of these objects. First, we characterize μ\mu as the unique measure of maximal entropy. Then we show that the measure μ\mu has a local product structure and that the currents μ±\mu^\pm have a laminar structure. This allows us to deduce information about periodic points and heteroclinic intersections. For example, we prove that the support of μ\mu coincides with the closure of the set of saddle points. The methods used combine the pluripotential theory with the theory of non-uniformly hyperbolic dynamical systems

    PCR for the detection of pathogens in neonatal early onset sepsis.

    Get PDF
    BACKGROUND: A large proportion of neonates are treated for presumed bacterial sepsis with broad spectrum antibiotics even though their blood cultures subsequently show no growth. This study aimed to investigate PCR-based methods to identify pathogens not detected by conventional culture. METHODS: Whole blood samples of 208 neonates with suspected early onset sepsis were tested using a panel of multiplexed bacterial PCRs targeting Streptococcus pneumoniae, Streptococcus agalactiae (GBS), Staphylococcus aureus, Streptococcus pyogenes (GAS), Enterobacteriaceae, Enterococcus faecalis, Enterococcus faecium, Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium, a 16S rRNA gene broad-range PCR and a multiplexed PCR for Candida spp. RESULTS: Two-hundred and eight samples were processed. In five of those samples, organisms were detected by conventional culture; all of those were also identified by PCR. PCR detected bacteria in 91 (45%) of the 203 samples that did not show bacterial growth in culture. S. aureus, Enterobacteriaceae and S. pneumoniae were the most frequently detected pathogens. A higher bacterial load detected by PCR was correlated positively with the number of clinical signs at presentation. CONCLUSION: Real-time PCR has the potential to be a valuable additional tool for the diagnosis of neonatal sepsis

    Weighted pluricomplex energy

    Full text link
    We study the complex Monge-Ampre operator on the classes of finite pluricomplex energy Eχ(Ω)\mathcal{E}_\chi (\Omega) in the general case (χ(0)=0\chi(0)=0 i.e. the total Monge-Ampre mass may be infinite). We establish an interpretation of these classes in terms of the speed of decrease of the capacity of sublevel sets and give a complete description of the range of the operator (ddc)n(dd^c \cdot)^n on the classes Eχ(Ω).\mathcal{E}\chi(\Omega).Comment: Contrary to what we claimed in the previous version, in Theorem 5.1 we generalize some Theorem of Urban Cegrell but we do not give a new proof. To appear in Potenial Analysi

    Identifying entanglement using quantum "ghost" interference and imaging

    Full text link
    We report a quantum interference and imaging experiment which quantitatively demonstrates that Einstein-Podolsky-Rosen (EPR) type entangled two-photon states exhibit both momentum-momentum and position-position correlations, stronger than any classical correlation. The measurements show indeed that the uncertainties in the sum of momenta and in the difference of positions of the entangled two-photon satisfy both EPR inequalities D(k1+k2)<min(D(k1),D(k2)) and D(x1-x2)<min(D(x1),D(x2)). These two inequalities, together, represent a non-classicality condition. Our measurements provide a direct way to distinguish between quantum entanglement and classical correlation in continuous variables for two-photons/two photons systems.Comment: We have changed Eq.(2) from one inequality to two inequalities. The two expressions are actually consistent with each other, but the new one represents a more stringent condition for entanglement and, in our opinion, better explains the original idea of EPR. We have clarified this point in the paper. 4 pages; submitted to PR

    Balanced scorecard design and performance impacts: some Australian evidence

    Full text link
    consideration to the use of performance measurement systems, notably the Balanced Scorecard (BSC). However, there has been limited empirical investigation into the particular benefits that result from the use of the BSC (Ittner and Larcker, 1998). This study empirically examines how the BSC has been applied in practice and whether different BSC designs result in varying performance outcomes. Data is from a cross sectional survey, which provided a sample of 92 Australian firms using BSC. It is hypothesised that the BSC provides greater benefits when 1) cause and effect logic is used between measures 2) nonfinancial measures are tied to compensation and 3) implemented at multiple levels within the organisation. Results support the first proposition, although cause and effect logic appears to be more important if the BSC is tied to compensation. These results are discussed, and implications for practice and future research are presented
    corecore