1,758 research outputs found

    Normal stresses, contraction, and stiffening in sheared elastic networks

    Full text link
    When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or changes in volume. We provide a novel relation between the Poynting effect and the microscopic Gr\"uneisen parameter, which quantifies how stretching shifts vibrational modes. By applying this relation to random spring networks, a minimal model for, e.g., biopolymer gels and solid foams, we find that networks contract or develop tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the network's linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we show that the Poynting effect can be used to predict the finite strain scale where the material stiffens under shear.Comment: 5 pages, 5 figure

    Quasi-generalized variables

    Get PDF
    The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics

    Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere

    Get PDF
    During a joint campaign in January 2009, the Rayleigh/Mie/Raman (RMR) lidar and the sodium lidar at the ALOMAR Observatory (69° N, 16° E) in Northern Norway were operated simultaneously for more than 40 h, collecting data for wind measurements in the middle atmosphere from 30 up to 110 km altitude. As both lidars share the same receiving telescopes, the upper altitude range of the RMR lidar and the lower altitude range of the sodium lidar overlap in the altitude region of ≈80–85 km. For this overlap region we are thus able to present the first simultaneous wind measurements derived from two different lidar instruments. The comparison of winds derived by RMR and sodium lidar is excellent for long integration times of 10 h as well as shorter ones of 1 h. Combination of data from both lidars allows identifying wavy structures between 30 and 110 km altitude, whose amplitudes increase with height. We have also performed vertical wind measurements and measurements of the same horizontal wind component using two independent lasers and telescopes of the RMR lidar and show how to use this data to calibrate and validate the wind retrieval. For the latter configuration we found a good agreement of the results but also identified inhomogeneities in the horizontal wind at about 55 km altitude of up to 20 ms<sup>−1</sup> for an integration time of nearly 4 h. Such small-scale inhomogeneities in the horizontal wind field are an essential challenge when comparing data from different instruments

    Systemically Administered Ligands of Toll-Like Receptor 2, -4, and -9 Induce Distinct Inflammatory Responses in the Murine Lung

    Get PDF
    Objective. To determine whether systemically administered TLR ligands differentially modulate pulmonary inflammation. Methods. Equipotent doses of LPS (20 mg/kg), CpG-ODN (1668-thioat 1 nmol/g), or LTA (15 mg/kg) were determined via TNF activity assay. C57BL/6 mice were challenged intraperitoneally. Pulmonary NFκB activation (2 h) and gene expression/activity of key inflammatory mediators (4 h) were monitored. Results. All TLR ligands induced NFκB. LPS increased the expression of TLR2, 6, and the cytokines IL-1αβ, TNF-α, IL-6, and IL-12p35/p40, CpG-ODN raised TLR6, TNF-α, and IL12p40. LTA had no effect. Additionally, LPS increased the chemokines MIP-1α/β, MIP-2, TCA-3, eotaxin, and IP-10, while CpG-ODN and LTA did not. Myeloperoxidase activity was highest after LPS stimulation. MMP1, 3, 8, and 9 were upregulated by LPS, MMP2, 8 by CpG-ODN and MMP2 and 9 by LTA. TIMPs were induced only by LPS. MMP-2/-9 induction correlated with their zymographic activities. Conclusion. Pulmonary susceptibility to systemic inflammation was highest after LPS, intermediate after CpG-ODN, and lowest after LTA challenge

    Recent developments for beam intensity increase operation

    Get PDF
    International audienceThe aim of the beam intensity increase operation (THI project) is to multiply the present intensities for lightest ions by a factor of fifteen in order to reach maximum power of six kilowatts [1]. The main objective is the production of large amounts of rare isotopes, either with SISSI (device intended for producing radioactive beams), or with SPIRAL (production and acceleration of radioactive ion beams). As part of this THI project, new developments have been required such as spiral scanners, for beanl profile measurements, and safety system to protect equipments against beam losses. Other developments are being carried on to improve the high intensity beam operation
    corecore