653 research outputs found
Pion-pair formation and the pion dispersion relation in a hot pion gas
The possibility of pion--pair formation in a hot pion gas, based on the
bosonic gap equation, is pointed out and discussed in detail. The critical
temperature for condensation of pion pairs (Evans--Rashid transition) is
determined as a function of the pion density. As for fermions, this phase
transition is signaled by the appearance of a pole in the two--particle
propagator. In bose systems there exists a second, lower critical temperature,
associated with the appearance of the single--particle condensate. Between the
two critical temperatures the pion dispersion relation changes from the usual
quasiparticle dispersion to a Bogoliubov--like dispersion relation at low
momenta. This generalizes the non-relativistic result for an attractive bose
gas by Evans et al. Possible consequences for the inclusive pion spectra
measured in heavy--ion collisions at ultra--relativistic energies are
discussed.Comment: 16 pages revtex, 7 Postscript figure
A Functional GTPase Domain, but not its Transmembrane Domain, is Required for Function of the SRP Receptor β-subunit
The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRα and SRβ, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRβ. This notion is supported (a) by Srp102p's sequence similarity to SRβ; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRα homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components
Electrokinetic optimization of a micromixer for lab-on-chip applications
This paper is concerned with the optimization of an electrokinetic micromixer suitable for Lab-on-Chip and other microfluidic applications. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house Finite-Element-Method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e. frequency and amplitude, for a given waveform. The simulation results of two optimized electrical excitations featuring a discrete and a continuous waveform are compared and discussed. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly
Thermal Hadron Production in High Energy Heavy Ion Collisions
We provide a method to test if hadrons produced in high energy heavy ion
collisions were emitted at freeze-out from an equilibrium hadron gas. Our
considerations are based on an ideal gas at fixed temperature , baryon
number density , and vanishing total strangeness. The constituents of this
gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay
according to the experimentally observed branching ratios. The ratios of the
various resulting hadron production rates are tabulated as functions of
and . These tables can be used for the equilibration analysis of any heavy
ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92
and Bielefeld preprint BI-TP 92/0
Strangeness production time and the K+/pi+ horn
We construct a hadronic kinetic model which describes production of strange
particles in ultrarelativistic nuclear collisions in the energy domain of SPS.
We test this model on description of the sharp peak in the excitation function
of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces
these data rather well. The model thus must be tested on other types of data in
order to verify the hypothesis that deconfinement sets in at lowest SPS
energies.Comment: proceedings of Hot Quarks 0
Coulomb Effects on Particle Spectra in Relativistic Nuclear Collisions
Coulomb effects on and spectra in relativistic nuclear collisions are investigated. At collision energies around 1 GeV the ratio of at ultrarelativistic energies. We describe the ratios at SIS, AGS and SPS energies with simple analytic models as well as more elaborate numerical models incorporating the expansion dynamics. The Coulomb effect depends on the properties of the source after the violent collision phase and provides information on source sizes, freeze-out times, and expansion velocities. Comparison with results from HBT analyses are made. Predictions for and at RHIC and LHC energies are given
Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra
We compute the Coulomb effects produced by an expanding, highly charged
fireball on the momentum distribution of pions. We compare our results to data
on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A
GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra
at low transverse momentum and mid-rapidity can be explained in both
experiments by the effect of the large amount of participating charge in the
central rapidity region. By adjusting the fireball expansion velocity to match
the average transverse momentum of protons, we find a best fit when the
fireball radius is about 10 fm, as determined by the moment when the pions
undergo their last scattering. This value is common to both the AGS and CERN
experiments.Comment: Enlarged discussion, new references added, includes new analysis of
pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi
The Transverse Structure of the Baryon Source in Relativistic Heavy Ion Collisions
A direct method to reconstruct the transverse structure of the baryon source
formed in a relativistic heavy ion collision is presented. The procedure makes
use of experimentally measured proton and deuteron spectra and assumes that
deuterons are formed via two-nucleon coalescence. The transverse density shape
and flow profile are reconstructed for Pb+Pb collisions at the CERN-SPS. The
ambiguity with respect to the source temperature is demonstrated and possible
ways to resolve it are discussed.Comment: 15 pages LaTeX, 4 postscript figures, uses psfig.sty - Revised
version, few minor change
- …