653 research outputs found

    Pion-pair formation and the pion dispersion relation in a hot pion gas

    Get PDF
    The possibility of pion--pair formation in a hot pion gas, based on the bosonic gap equation, is pointed out and discussed in detail. The critical temperature for condensation of pion pairs (Evans--Rashid transition) is determined as a function of the pion density. As for fermions, this phase transition is signaled by the appearance of a pole in the two--particle propagator. In bose systems there exists a second, lower critical temperature, associated with the appearance of the single--particle condensate. Between the two critical temperatures the pion dispersion relation changes from the usual quasiparticle dispersion to a Bogoliubov--like dispersion relation at low momenta. This generalizes the non-relativistic result for an attractive bose gas by Evans et al. Possible consequences for the inclusive pion spectra measured in heavy--ion collisions at ultra--relativistic energies are discussed.Comment: 16 pages revtex, 7 Postscript figure

    A Functional GTPase Domain, but not its Transmembrane Domain, is Required for Function of the SRP Receptor β-subunit

    Get PDF
    The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRα and SRβ, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRβ. This notion is supported (a) by Srp102p's sequence similarity to SRβ; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRα homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components

    Electrokinetic optimization of a micromixer for lab-on-chip applications

    Get PDF
    This paper is concerned with the optimization of an electrokinetic micromixer suitable for Lab-on-Chip and other microfluidic applications. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house Finite-Element-Method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e. frequency and amplitude, for a given waveform. The simulation results of two optimized electrical excitations featuring a discrete and a continuous waveform are compared and discussed. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    Coulomb Effects on Particle Spectra in Relativistic Nuclear Collisions

    Get PDF
    Coulomb effects on π±\pi^\pm and K±K^\pm spectra in relativistic nuclear collisions are investigated. At collision energies around 1 GeV the ratio of at ultrarelativistic energies. We describe the ratios at SIS, AGS and SPS energies with simple analytic models as well as more elaborate numerical models incorporating the expansion dynamics. The Coulomb effect depends on the properties of the source after the violent collision phase and provides information on source sizes, freeze-out times, and expansion velocities. Comparison with results from HBT analyses are made. Predictions for π±\pi^\pm and K±K^\pm at RHIC and LHC energies are given

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    The Transverse Structure of the Baryon Source in Relativistic Heavy Ion Collisions

    Get PDF
    A direct method to reconstruct the transverse structure of the baryon source formed in a relativistic heavy ion collision is presented. The procedure makes use of experimentally measured proton and deuteron spectra and assumes that deuterons are formed via two-nucleon coalescence. The transverse density shape and flow profile are reconstructed for Pb+Pb collisions at the CERN-SPS. The ambiguity with respect to the source temperature is demonstrated and possible ways to resolve it are discussed.Comment: 15 pages LaTeX, 4 postscript figures, uses psfig.sty - Revised version, few minor change
    corecore