71 research outputs found
Bioaccumulation of lead in milk of buffaloes from Cooum river belt in Chennai
Abstract: Bioaccumulation of heavy metals has been studied in aquatic flora and fauna to a greater extent than in terrestrial animals. Hence, this study was performed to find out whether lead was excreted in the milk of buffaloes reared near the Cooum belt which was fed by contaminated feed and polluted water from the nearby wells. The concentrations of lead in milk of buffaloes fed under farm conditions were also studied. The results have indicated that the ground water (0.32 µg ml -1 ) and feed (8.62 µg g -1 ) are the sources of lead in buffalo milk (0.06 µg ml -1 ). It revealed that one unit increases of lead in water and feed corresponded to an increase of 77.38 and 37.77 units respectively in milk of buffaloes reared near the contaminated watercourse. However, the milk of buffaloes from Central Cattle Breeding Farm is free from lead (0.013 µg ml -1 ) pollution. The reason for bioaccumulation of lead in the milk of buffaloes reared near the sewage carrying river is due to drinking of contaminated ground water from wells and bore-wells dug near the river
Novel PEMFC Cathodes Prepared by Pulse Deposition
A pulse electrodeposition method of preparing thin platinum catalyst layers for polymer electrolyte membrane fuel cell (PEMFC) cathodes has been developed through surface activation of the gas diffusion layer (GDL) by a wetting agent. The performance of the catalyst layer was optimized by wetting agent type, immersion time in the wetting agent, and pulse deposition parameters such as total charge density, peak current density, and duty cycle ratio. The Toff time played a more important role than the Ton time in determining the electrode characteristics such as high concentration of Pt, smaller particle size, and loading. Pt cathodes prepared using a peak current density of 400 mA/cm2 with a duty cycle of 10.7% and total charge density of 6 C/cm2 resulted in a thin platinum catalyst layer (1.92 µm) and uniformly distributed platinum nanoparticles (3–4 nm) on the GDL surface. Novel cathodes with Pt loading of 0.33 mg/cm2 prepared in the present study exhibited 746 mA/cm2 at 0.7 V
Synthesis of Co and Cu codoped ZnO nanoparticles by citrate gel combustion method: Photocatalytic and antimicrobial activity
ZnO, single-doped (Co-ZnO, Cu-ZnO), and co-doped ZnO ((Co, Cu)/ZnO) were effectively synthesized by the citrate gel combustion technique. The samples were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), Fourier transforms infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence spectroscopy (PL). The average particle size was 30.33 nm as calculated from XRD patterns for (Co, Cu)/ZnO. UV-Vis absorption spectrum indicates that the co-doped ZnO exhibits increased visible light absorption compared to the undoped one. The photoluminescence spectroscopy shows that the separation efficiency of photo-induced electrons and hole is enhanced by the co-doping strategy. (Co, Cu)/ZnO nanoparticles demonstrated a strong visible light response and high photocatalytic activity for Rhodamine B (RhB) degradation under irradiation by visible light (400-500 nm). The visible-light photocatalytic activity of the prepared (Co, Cu)/ZnO may come about because of the incorporation of Co, Cu atoms in ZnO, photo-induced electron-hole pairs and extended the spectral response to the visible region. The antibacterial and antifungal activities of ZnO, Co-ZnO, Cu-ZnO, and (Co, Cu)/ZnO were studied respectively with Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) ( bacterial strain) and Aspergillus flavus, Candida albicans (fungal strain). The (Co, Cu)/ZnO enhanced the antimicrobial activity
CytoSolve: A Scalable Computational Method for Dynamic Integration of Multiple Molecular Pathway Models
A grand challenge of computational systems biology is to create a molecular pathway model of the whole cell. Current approaches involve merging smaller molecular pathway models’ source codes to create a large monolithic model (computer program) that runs on a single computer. Such a larger model is difficult, if not impossible, to maintain given ongoing updates to the source codes of the smaller models. This paper describes a new system called CytoSolve that dynamically integrates computations of smaller models that can run in parallel across different machines without the need to merge the source codes of the individual models. This approach is demonstrated on the classic Epidermal Growth Factor Receptor (EGFR) model of Kholodenko. The EGFR model is split into four smaller models and each smaller model is distributed on a different machine. Results from four smaller models are dynamically integrated to generate identical results to the monolithic EGFR model running on a single machine. The overhead for parallel and dynamic computation is approximately twice that of a monolithic model running on a single machine. The CytoSolve approach provides a scalable method since smaller models may reside on any computer worldwide, where the source code of each model can be independently maintained and updated
OREMPdb: a semantic dictionary of computational pathway models
<p>Abstract</p> <p>Background</p> <p>The information coming from biomedical ontologies and computational pathway models is expanding continuously: research communities keep this process up and their advances are generally shared by means of dedicated resources published on the web. In fact, such models are shared to provide the characterization of molecular processes, while biomedical ontologies detail a semantic context to the majority of those pathways. Recent advances in both fields pave the way for a scalable information integration based on aggregate knowledge repositories, but the lack of overall standard formats impedes this progress. Indeed, having different objectives and different abstraction levels, most of these resources "speak" different languages. Semantic web technologies are here explored as a means to address some of these problems.</p> <p>Methods</p> <p>Employing an extensible collection of interpreters, we developed OREMP (Ontology Reasoning Engine for Molecular Pathways), a system that abstracts the information from different resources and combines them together into a coherent ontology. Continuing this effort we present OREMPdb; once different pathways are fed into OREMP, species are linked to the external ontologies referred and to reactions in which they participate. Exploiting these links, the system builds species-sets, which encapsulate species that operate together. Composing all of the reactions together, the system computes all of the reaction paths from-and-to all of the species-sets.</p> <p>Results</p> <p>OREMP has been applied to the curated branch of BioModels (2011/04/15 release) which overall contains 326 models, 9244 reactions, and 5636 species. OREMPdb is the semantic dictionary created as a result, which is made of 7360 species-sets. For each one of these sets, OREMPdb links the original pathway and the link to the original paper where this information first appeared. </p
Lovastatin Protects against Experimental Plague in Mice
Background: Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. Methodology: Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. Conclusions/Significance: Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P,0.004; Mantel-Haensze
High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy
Background: Historical records suggest that multiple burial sites from the 14th-16(th) centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics.Methodology/Principal Findings: High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype.Conclusions: These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century
Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis
Plague, caused by Yersinia pestis, is one of the oldest and most dangerous diseases in human history, and has claimed millions of lives in the three major historical pandemics. Although panic caused by the Black Death is fading, the threat of the reemergence of plague pandemics still exists, with the additional potential of misuse in biowarfare or bioterrorism. Rapid on-site detection and identification of the pathogen is of paramount significance for timely implementation of effective countermeasures. TaqMan probe-based real-time PCR assays can give quick and accurate identification; however, the need for cold delivery and storage prevents its potential on-site application. The objective of this study was to develop a stable PCR system for easy delivery and storage under room temperature, which is vital for conventional plague surveillance and for preparedness in public health emergencies. We present a solution to this particular issue, hoping that it is helpful to future applications
Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico
Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen
Module-based multiscale simulation of angiogenesis in skeletal muscle
<p>Abstract</p> <p>Background</p> <p>Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.</p> <p>Results</p> <p>We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis.</p> <p>Conclusions</p> <p>This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions.</p
- …