45 research outputs found

    Acute phase response in two consecutive experimentally induced E. coli intramammary infections in dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with <it>Escherichia coli </it>and to evaluate the possible carry-over effect when same animals are used in an experimental model.</p> <p>Methods</p> <p>Mastitis was induced with a dose of 1500 cfu of <it>E. coli </it>in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) were determined in serum and milk.</p> <p>Results</p> <p>In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the <it>E. coli </it>infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by <it>E. coli</it>.</p> <p>Conclusion</p> <p>Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary induction of the same animals with <it>E. coli </it>is used in cross-over studies, the interval between challenges should be longer than 2 weeks, due to the carry-over effect from the first infection.</p

    Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems.</p> <p>Methods</p> <p>Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol.</p> <p>Results</p> <p>All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed.</p> <p>Conclusion</p> <p>NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds.</p

    Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome

    Get PDF
    Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns

    Serum acute phase proteins in cows with SARA (Subacute Ruminal Acidosis) suspect

    Get PDF
    The aim of this study was to evaluate the variations of Acute Phase Proteins (APPs) and other blood constituents during the onset of the sub-acute ruminal acidosis (SARA) pathological status. A total of 108 cows from 12 dairy herds were randomly selected and divided into three Groups of 36 animals each. All animals were subjected to a rumenocentesis. Group A was composed by subjects with a rumen pH>5.8, Group B was composed by subjects with a rumen pH ≤5.5≤5.8 and Group C was composed by subjects with a rumen pH<5.5. Blood samples were collected by jugular venipuncture and Haptoglobin (Hp), Serum Amyloid A (SAA), Total Proteins, Albumin and White Blood Cells (WBC) were determined. One-way ANOVA showed a statistical significance on Rumen pH, Hp, SAA. SARA seems not stimulate the APPs production from liver
    corecore