39 research outputs found

    Hypoxia Impairs Muscle Function and Reduces Myotube Size in Tissue Engineered Skeletal Muscle

    Get PDF
    Contemporary tissue engineered skeletal muscle models display a high degree of physiological accuracy compared with native tissue, and therefore may be excellent platforms to understand how various pathologies affect skeletal muscle. Chronic obstructive pulmonary disease (COPD) is a lung disease which causes tissue hypoxia and is characterized by muscle fiber atrophy and impaired muscle function. In the present study we exposed engineered skeletal muscle to varying levels of oxygen (O2; 21–1%) for 24 h in order to see if a COPD like muscle phenotype could be recreated in vitro, and if so, at what degree of hypoxia this occurred. Maximal contractile force was attenuated in hypoxia compared to 21% O2; with culture at 5% and 1% O2 causing the most pronounced effects with 62% and 56% decrements in force, respectively. Furthermore at these levels of O2, myotubes within the engineered muscles displayed significant atrophy which was not seen at higher O2 levels. At the molecular level we observed increases in mRNA expression of MuRF-1 only at 1% O2 whereas MAFbx expression was elevated at 10%, 5%, and 1% O2. In addition, p70S6 kinase phosphorylation (a downstream effector of mTORC1) was reduced when engineered muscle was cultured at 1% O2, with no significant changes seen above this O2 level. Overall, these data suggest that engineered muscle exposed to O2 levels of ≤5% adapts in a manner similar to that seen in COPD patients, and thus may provide a novel model for further understanding muscle wasting associated with tissue hypoxia

    Towards the entanglement negativity of two disjoint intervals for a one dimensional free fermion

    Get PDF
    We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on a coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities also imply the nontrivial result that the negativity of the free fermion and the self-dual boson are equal

    Analysis of protein carbonylation - pitfalls and promise in commonly used methods

    Get PDF
    Abstract Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the patho-physiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientist became more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods
    corecore