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Towards entanglement negativity of two disjoint

intervals for a one dimensional free fermion

Andrea Coser, Erik Tonni and Pasquale Calabrese

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

Abstract. We study the moments of the partial transpose of the reduced density

matrix of two intervals for the free massless Dirac fermion. By means of a direct

calculation based on coherent state path integral, we find an analytic form for these

moments in terms of the Riemann theta function. We show that the moments of arbitrary

order are equal to the same quantities for the compactified boson at the self-dual point.

These equalities imply the non trivial result that also the negativity of the free fermion

and the self-dual boson are equal.
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1. Introduction

The study of the entanglement content of extended quantum systems became in recent

times a subject of extremely large theoretical interest (see e.g. the references in [1] as

reviews). While the bipartite entanglement for an extended system in a pure state is a

well understood subject and it can be quantified by the so-called entanglement entropy

(i.e. the von Neumann entropy of the reduced density matrix of one of the two parts), for a

mixed state the quantification of the entanglement is a more subtle issue. The observation

that the entanglement in a bipartite mixed state is related to the presence of negative

eigenvalues in the partial transpose of the density matrix [2] has led to the introduction

of the negativity [3] which subsequently has been shown to be an entanglement monotone

[4], i.e. a good entanglement measure from a quantum information point of view.



Towards entanglement negativity for a 1D free fermion 3

Although the negativity is a “computable measure of entanglement” [3], its direct

and explicit computation in a many body system is very cumbersome. This difficulty can

be (at least partially) overcome by a replica approach based on the computation of the

even moments of the partially transpose density matrix [5]. This recent approach has

been already applied to the study of one-dimensional conformal field theories (CFT) in

the ground state [5, 6, 7, 8], in thermal state [9, 10], and in non-equilibrium protocols

[10, 11, 12, 13], as well as to topological systems [14, 15, 16]. Focusing on 1D CFTs in

the ground state, the negativity is explicitly known only for the simple (but non trivial)

geometry of two adjacent intervals embedded in a larger system. For the very important

case of the entanglement between two disjoint intervals only the limit of close intervals

is explicitly known. For arbitrary distances between the intervals, the main difficulty is

to find the analytic continuation of the even-integer moments to n → 1, although these

moments are analytically known in a few cases [6, 7] (and indeed numerical interpolation

techniques [17] have been exploited to have a numerical prediction for the negativity [18]).

These analytical studies have been paralleled by several numerical works such as in Refs.

[19, 20, 21, 22, 23, 24, 25].

The goal of this manuscript is to investigate the negativity for the one-dimensional

CFT of a free fermionic model. The main result is a close analytical form for the

moments of the partial transpose of two disjoint intervals for the massless free Dirac

fermion reported in Eq. (55). The explicit form of the moments is exactly the same as for

the compactified boson at the self-dual point obtained in Ref. [6].

The manuscript is organised as follows. In Sec. 2 we build the partial transpose of

the fermionic density matrix using coherent state path integral. In Sec. 3 we provide the

analytical form for the moments of the partial transpose of two disjoint intervals and we

analyse it. Finally in Sec. 4 we draw our conclusions and discuss some open problems. In

a series of four appendices we report a number of technical details.

2. Partial transpose of the reduced density matrix for the free fermion

In this section we provide a path integral formula for the partial transpose of the density

matrix for a free fermionic field theory, after a brief review of the result of Eisler and

Zimboras [26] for the partial transpose of the reduced density matrix of two disjoint

blocks on the lattice.

2.1. Review of the lattice results

We start from the the tight binding model with Hamiltonian

H =
1

2

L∑
i=1

[
c†ici+1 + c†i+1ci

]
, (1)

where periodic boundary conditions are assumed. We only consider the model at half

filling kF = π/2. Since (1) is quadratic in the fermionic operators, it can be diagonalized
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in momentum space. The scaling limit of this model is the massless Dirac fermion which

is a CFT with c = 1. The local Hilbert space Hj of a single site is two dimensional and we

can choose a basis made by the two vectors corresponding to whether the fermion occurs

(|1〉) or not (|0〉). In this basis the operators cj and c†j act as the creation and annihilation

operators, cj |0〉 = c†j |1〉 = 0, while c†j |0〉 = |1〉 and cj |1〉 = |0〉. The tight-binding model

can be mapped by a Jordan-Wigner transformation into the XX spin chain

HXX =
L∑
j=1

[
σxj σ

x
j+1 + σyjσ

y
j+1

]
. (2)

Although these models are mapped one into the other, since the Jordan-Wigner

transformation between them is not local, the entanglement (both entropy and negativity)

of two disjoint blocks are not equal, as pointed out already in the literature [27, 28].

We always consider the entire system to be in the ground state |Ψ〉 with density

matrix ρ = |Ψ〉 〈Ψ|. It is useful to introduce the following Majorana fermions [29]

axj = cj + c†j, ayj = i(cj − c†j), (3)

which satisfy the anticommutation relations {aαr , aβs} = 2δαβδrs. The single site Majorana

operators can be also written as

axj = Σx
j , ayj = −Σy

j , i axja
y
j = Σz

j . (4)

The operators Σα
j on the single site satisfy the algebra of the Pauli matrices, but at

different sites they anticommute and so they are not proper spin operators and should

not be confused with the σαj in (2). For each site, we also need to define the following

unitary operator

U (k)
α = eiα

2
Σkj = cos (α/2) I + i sin (α/2) Σk

j , (5)

whose action on the Majorana operators (4) can be obtained from the following relation

U
(k)
−α Σb

j U
(k)
α =

[
δk,b + (1− δk,b cosα)

]
Σb
j + (sinα)εkb` Σ`

j, (6)

where εkb` is the totally antisymmetric tensor such that εxyz = 1.

In this manuscript we are interested in a subsystem A = A1∪A2 made by two disjoint

blocks of lattice sites. Denoting by B = B1 ∪ B2 the complementary set of sites, which

is also made by two disjoint blocks, the reduced density matrix is ρA = TrB |Ψ〉 〈Ψ|. This

operator is Gaussian and it can be written as [29]

ρA =
1

2`1+`2

∑
w12O1O2, w12 = 〈O†2O

†
1〉 , (7)

where Ok (with k ∈ {1, 2}) is a generic product of Majorana operators in Ak, namely

Ok =
∏

j∈Ak(a
x
j )
µx
[j](ayj )

µy
[j] with µα[j] ∈ {0, 1}. The sum in (7) is performed over all possible

combinations of µα[j].

Let us consider the operator O2 and introduce µ2 =
∑

j∈A2
(µx[j] + µy[j]) the total

number of Majorana operators in O2 and µy2 =
∑

j∈A2
µy[j] the number of ayr ’s in O2. The
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transpose of O2 (which obviously coincides with the partial transpose with respect to A2

in this case) is given by

OT
2 = (−1)τ(µ2)(−1)µ

y
2 O2, (8)

where

τ(µ2) =

{
0 (µ2 mod 4) ∈ {0, 1},
1 (µ2 mod 4) ∈ {2, 3}.

(9)

The factor (−1)τ(µ2) in (8) originates from a rearrangement of the ax,y’s operators after

the transposition, while the factor (−1)µ
y
2 comes from the fact that (ayr)

T = −ayr and

(axr )
T = axr for the Majorana operators occurring in O2. This extra factor can be removed

by a unitary transformation. Another transposition can be naturally defined, namely

OT̂
2 = U

(x)
−π O

T
2 U

(x)
π = (−1)τ(µ2)O2, (10)

where the unitary U
(x)
π is now a product of terms like (5) over all the sites and it changes

the sign of the ayr ’s leaving the axr ’s untouched. This is the definition introduced in [26]

and we will adopt this convention throughout this manuscript. Thus, let us drop the hat

in (10) and denote it simply by OT
2 .

Given a block C of contiguous sites, an important ingredient in our analysis is the

following string of Majorana operators

PC =
∏
j∈C

i axja
y
j , (11)

which satisfies P−1
C = PC .

The partial transpose of ρA with respect to A2 can be written as the following sum

of two Gaussian operators [26]

ρT2A =
1− i

2
ρ̃A +

1 + i

2
PA2 ρ̃APA2 =

1√
2

(
e−iπ

4 ρ̃A + eiπ
4PA2 ρ̃APA2

)
, (12)

where the construction of ρ̃A has been reviewed in App. A and PA2 is the string of

Majorana operators (11) along A2.

The computation of Tr(ρT2A )n through (12) provides an expression containing 2n terms

given by all the combinations of ρ̃0 ≡ ρ̃A and ρ̃1 ≡ PA2 ρ̃APA2 , which can be written as

Tr
(
ρT2A
)n

=
∑

p1,p2,...pn=0,1

eiπ
4

∑n
i pi e−iπ

4 (n−
∑n
i pi)

2n/2
Tr

[ n∏
k=1

ρ̃pk

]
. (13)

This formula can be further simplified noticing that the various terms in the sum are

invariant under the exchange pi → 1 − pi. Using this and reorganising the terms in the

sum, we can write

Tr(ρT2A )n =
1

2n−1

∑
p

2n/2 cos

[
π

4

(
2
n−1∑
i=1

pi − n
)]

Tr

[
ρ̃0

n−1∏
k=1

ρ̃pk

]
, (14)

where the vector p has n− 1 components equal to 0 or 1 and therefore the sum contains

2n−1 terms.
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2.2. Fermionic coherent states for a single site

In this subsection, we briefly review the features of the fermionic coherent states [30]

which are needed to build the path integral of ρA and ρ̃A. Here we focus on a single site

(indeed, the site index will be dropped in this subsection) and in the next subsection the

natural extension to many sites will be considered.

The coherent states for fermions are defined through the Grassmann anticommuting

variables. If θ1 and θ2 are real Grassmann variables, we have that θ2
i = 0 for i ∈ {1, 2}

and θ1θ2 = −θ2θ1. Since θ2 = 0, a function f(θ) of the real Grassman variable can be

written as f(θ) = f0 + f1θ. Given two real Grassmann variables one can build a complex

Grassmann variable ζ as follows

ζ =
1√
2

(
θ1 + i θ2

)
, ζ∗ =

1√
2

(
θ1 − i θ2

)
. (15)

The integration over a complex Grassmann variable acts as a derivation; indeed∫
dζ∗dζ = 0,

∫
dζ∗dζ ζ = 0,

∫
dζ∗dζ ζ∗ = 0,

∫
dζ∗dζ ζ ζ∗ = 1. (16)

The coherent states are defined as follows

|ζ〉 = |0〉 − ζ |1〉 , 〈ζ| = 〈0|+ ζ∗ 〈1| . (17)

Since ζ commutes with |0〉 and anticommutes with c, c† and |1〉, it is straightforward to

check that c |ζ〉 = ζ |ζ〉 and 〈ζ| c† = 〈ζ| ζ∗. Notice that the coherent states do not provide

an orthonormal basis. A completeness relation and a formula for the trace of an operator

O read respectively

I =

∫
dζ∗dζ e−ζ

∗ζ |ζ〉 〈ζ| , TrO =

∫
dζ∗dζ e−ζ

∗ζ 〈−ζ|O |ζ〉 . (18)

Given the above rules, the matrix elements of the identity and of the operators in

(4) on the coherent states (17) can be computed, finding that

〈ζ|η〉 = 1 + ζ∗η = 〈η∗| − ζ∗〉 , (19)

〈ζ|ax|η〉 = ζ∗ + η = 〈η∗|ax|ζ∗〉 , (20)

〈ζ|ay|η〉 = −i(ζ∗ − η) = −〈η∗|ay|ζ∗〉 , (21)

〈ζ|iaxay|η〉 = 1− ζ∗η = 〈η∗|iaxay| − ζ∗〉 , (22)

where the second rewriting will be useful in the following subsection. Since i axay |ζ〉 =

|−ζ〉, we can bring (20) and (21) in the same form of (19) and (22):

〈ζ|ax|η〉 = 〈η∗|iay| − ζ∗〉 = −i 〈η∗|U (z)
−π/2 a

x U
(z)
π/2 | − ζ

∗〉 , (23)

〈ζ|ay|η〉 = 〈η∗|iax| − ζ∗〉 = i 〈η∗|U (z)
−π/2 a

y U
(z)
π/2 | − ζ

∗〉 . (24)

Notice that the insertion of U
(z)
π/2 and its hermitian conjugate in (19) and (22) has no

effect.
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2.3. Partial transpose of the reduced density matrix

The coherent state |ζ(x)〉 for a lattice is the tensor product of single site coherent states,

with x runnig along the whole system or the corresponding subsystem. In the following we

consider a lattice system but the final formulas can be extended to a continuous spatial

dimension in a straightforward way by interpreting the discrete sums as integrals and

integrations over a discrete set of variables as path integrals.

The density matrix of the whole system in the ground state is ρ = |Ψ〉 〈Ψ| and its

matrix element between two generic coherent states reads

ρ(ζ(x), η(x)) = e−ζ
∗η 〈ζ(x)|Ψ〉 〈Ψ|η(x)〉 , (25)

where ζ∗η =
∑

x ζ
∗(x) η(x), with x labelling the whole system and e−ζ

∗η is the

normalization factor (see (19)). To obtain the reduced density matrix in A, one first

separates the degrees of freedom in A and the ones in B and then traces over the latter

ones. Denoting by |ζA(xA)〉 and |ζB(xB)〉 the coherent states on A and B respectively, we

have that |ζ(x)〉 = |ζA(xA)〉⊗|ζB(xB)〉. Adopting the notation |ζ(x)〉 = |ζA(xA), ζB(xB)〉,
the matrix element of ρA is given by

ρA(ζA(xA), ηA(xA)) = e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA, −χB|Ψ〉 〈Ψ|ηA, χB〉 , (26)

where Dχ∗BDχB =
∏

xB
dχ∗B(xB) dχB(xB) and the minus sign comes from the trace over

B, according to (18). In the continuum limit, the braket 〈Ψ|ηA, χB〉 is the fermionic path

integral on the upper half plane where the boundary conditions ηA(xA) and χB(xB) are

imposed in A and B respectively, just above the real axis. Analogously, 〈ζA, −χB|Ψ〉 is

the path integral on the lower half plane. The trace over B is performed by setting the

fields along B equal (but with opposite sign) and summing over all the configurations.

The resulting path integral is over the whole plane with two open slits along A1 and A2,

where the boundary conditions ηA and ζA are imposed respectively along the lower and

the upper edge of A (left panel of Fig. 1).

Let us consider the partial transpose ρT2A with respect to A2. In App. A the lattice

results of [26] that we need in our analysis are briefly reviewed. Remembering that

the partial transposition acts only on operators in A2, from (7) we can write its matrix

elements as follows

〈ζ(x)|ρT2A |η(x)〉 =
1

2`1+`2

∑
w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|OT

2 |η2(x2)〉 , (27)

where xj ∈ Aj, with j ∈ {1, 2}.
Focussing on the term corresponding to A2 in (27), from (10), (19)-(24) one finds

〈ζ2(x2)|OT
2 |η2(x2)〉 = (−1)τ(µ2) iµ

y
2−µx2 〈η∗2(x2)|U (z)

−π/2O2 U
(z)
π/2 | − ζ

∗
2 (x2)〉 , (28)

where the unitary map U
(z)
−π/2 acts on all sites. When the number µ2 of Majorana operators

in A2 is even, from (9) we have that (−1)τ(µ2) = iµ2 and therefore

〈ζ2(x2)|(OT
2 )even|η2(x2)〉 = (−1)µ

y
2 〈η∗2(x2)|U (z)

−π/2 (O2)even U
(z)
π/2 | − ζ

∗
2 (x2)〉 (29)

= 〈η∗2(x2)|U (y)
−π U

(z)
−π/2 (O2)even U

(z)
π/2 U

(y)
π | − ζ∗2 (x2)〉 , (30)
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Figure 1. Path integral representation of ρA and ρ̃A in the coherent state basis.

where in (30) the factor (−1)µ
y
2 has been removed through a second unitary transformation

which sends axj → −axj leaving the ayj ’s unchanged (we recall that U
(z)
−π/2 exchanges the

axj ’s with the ayj ’s). The expression (30) suggests us to introduce the following unitary

operator acting on A2

V2 ≡ U
(y)
−π U

(z)
−π/2 =

∏
j∈A2

exp

(
− i

π

2

axj − a
y
j√

2

)
=
∏
j∈A2

exp
[
− i

π

2

(
eiπ

4 c†j + e−iπ
4 cj

)]
, (31)

whose net effect is to send axj → −a
y
j and ayj → −axj , for j ∈ A2.

In a similar way, we can treat the case of odd µ2, for which (−1)τ(µ2) = iµ2−1 (see

(9)). Again, from (10), (19)-(24) one gets

〈ζ2(x2)|
(
OT

2

)
odd
|η2(x2)〉 = − i (−1)µ

y
2 〈η∗2(x2)|U (z)

−π/2 (O2)odd U
(z)
π/2 | − ζ

∗
2 (x2)〉 (32)

= − i 〈η∗2(x2)|V2 (O2)odd V
†

2 | − ζ∗2 (x2)〉 . (33)

Introducing the operator Õ2 through its matrix elements as follows

〈ζ2(x2)|Õ2|η2(x2)〉 = 〈η∗2(x2)|V2O2 V
†

2 | − ζ∗2 (x2)〉 , (34)

the expression (27) can be written as follows

〈ζ(x)|ρT2A |η(x)〉 =
1

2`1+`2

(∑
even

w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|Õ2|η2(x2)〉 (35)

− i
∑
odd

w12 〈ζ1(x1)|O1|η1(x1)〉 〈ζ2(x2)|Õ2|η2(x2)〉
)
,

where in the first (second) sum the terms have an even (odd) number of fermionic

operators in A2 (see App. A). In (35) the structure ρT2A = ρ̃even − i ρ̃odd (see (68)) can

be recognised and this observation leads us to identify the matrix element of ρ̃A on the

coherent states

〈ζ(x)|ρ̃A|η(x)〉 = 〈ζ1(x1), η∗2(x2)|V2 ρA V
†

2 |η1(x1), −ζ∗2 (x2)〉 , (36)

and analogously

〈ζ(x)|PA2 ρ̃APA2|η(x)〉 = 〈ζ1(x1), −η∗2(x2)|V2 ρA V
†

2 |η1(x1), ζ∗2 (x2)〉 , (37)

where from (22) we can read that the action of PA2 is to change the sign of ζ2. A

graphical representation of this path integral representation for ρ̃A is given in the right
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panel of Fig. 1. Hence, the final expression for the the partial transpose in the coherent

state basis can be written exactly like the lattice counterpart i.e.

ρT2A (ζ, η) =
1√
2

[
e−iπ

4 ρ̃A(ζ1, ζ2; η1, η2) + eiπ
4 ρ̃A(ζ1,−ζ2; η1,−η2)

]
, (38)

where the notation is such that ηi, ζi ∈ Ai. This explicit form of the partial transpose in

the coherent state basis is the final and main result of this section.

In App. B we employ the formalism of this section to check the identity Tr(ρT2A )2 =

Trρ2
A (which holds for any quantum system [5, 6]) for the free fermion.

3. Traces of the partial transpose for the free fermion

In this section we consider the moments Tr(ρT2A )n for the free fermion. After summarising

some needed CFT results for the moments of ρA (Sec. 3.1), using the path integral

approach of the previous section, we derive the analytic formula for Tr(ρT2A )n given by

(55) which is the main result of this manuscript. In Sec. 3.3 we show that the moments

for the free fermion are equal to the ones for the compact boson at the self-dual radius.

Finally, in Sec. 3.4 we give some numerical checks of our results.

3.1. Some CFT results for TrρnA

For the case of a single interval of length ` embedded in a CFT on the infinite line, the

moments of the reduced density matrix can be written as [31, 32, 33]

TrρnA = cn

(
`

a

)−c(n−1/n)/6

, (39)

where c is the central charge and a the inverse of an ultraviolet cutoff (e.g. the lattice

spacing). The prefactors cn are non universal constants (that however satisfy universal

relations [34]). The simple universal dependence on the central charge can be understood

because TrρnA is the partition function on a surface of genus zero that can be mapped to

the complex plane [32]. Eq. (39) can be interpreted as the two-point function of some twist

operators acting at the endpoints of the interval u and v [32, 35], i.e. TrρnA = 〈Tn(u)T̄n(v)〉.
The twist fields Tn behave like primary operators with scaling dimension

∆n =
c

12

(
n− 1

n

)
. (40)

The knowledge of the moments TrρnA give access to the full spectrum of the reduced

density matrix [36]. While cn is not universal, its value for the tight-binding model at

half-filling is known exactly and it is given by [37]

cn = 2−
1
6(n− 1

n) exp

{
in

∫ ∞
−∞

dz log

(
Γ
(

1
2

+ iz
)

Γ
(

1
2
− iz

))[ tanh (πz)− tanh (πnz)
]}
. (41)
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For the case of two disjoint intervals A = A1 ∪ A2 = [u1, v1] ∪ [u2, v2], by global

conformal invariance, in the thermodynamic limit, TrρnA can be written as (dropping

hereafter the dependence on the UV cutoff a)

TrρnA = c2
n

(
|u1 − u2||v1 − v2|

|u1 − v1||u2 − v2||u1 − v2||u2 − v1|

)2∆n

Fn(x), (42)

where x is the four-point ratio (for real uj and vj, x is real)

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
∈ (0, 1). (43)

The function Fn(x) is a universal function (after being normalized such that Fn(0) = 1)

that encodes all the information about the operator spectrum of the CFT while cn is

the same non-universal constant appearing in (39). The function Fn has been studied in

several papers [38, 39, 40, 41, 42, 43, 44, 45, 46, 28, 47, 48, 49, 50] (see [51, 44, 52] for the

holographic viewpoint and [53] for higher dimensional conformal field theories). In the

case of two disjoint intervals, TrρnA is the partition function on a surface of genus n − 1

which cannot be mapped to the complex plane. This surface is usually called Rn.

One of the most important examples of exactly known Fn(x) is the free boson

compactified on a circle of radius rcircle. In this case, the function Fn(x) (parametrized in

terms of η = 2r2
circle) is [38]

Fn(x) =
Θ
(
0|ητ

)
Θ
(
0|τ/η

)
[Θ
(
0|τ
)
]2

, (44)

where τ is an (n− 1)× (n− 1) matrix (called period matrix) with elements [38]

τi,j = i
2

n

n−1∑
k=1

sin(πk/n)
2F1(k/n, 1− k/n; 1; 1− x)

2F1(k/n, 1− k/n; 1;x)
cos[2π(k/n)(i− j)]. (45)

We remark that, since x ∈ (0, 1), the period matrix τ(x) is purely imaginary. Θ is the

Riemann theta function [54, 55]

Θ(z|M) ≡
∑

m∈Zn−1

e iπmt·M ·m+2πimt·z, (46)

which is a function of the (n−1) dimensional complex vector z and of the (n−1)×(n−1)

matrix M which must be symmetric and with positive imaginary part.

For the critical Ising model, the scaling function Fn(x) is also known [39]

Fn(x) =
1

2n−1 Θ(0|τ)

∑
ε,δ

∣∣∣∣Θ[ εδ
]
(0|τ)

∣∣∣∣, (47)

where the period matrix τ is the same as in Eq. (45). In this case Θ is the Riemann theta

function with characteristic defined as [54, 55]

Θ[e](z|M) ≡
∑

m∈Zn−1

e iπ(m+ε)t·M ·(m+ε)+2πi (m+ε)t·(z+δ), e ≡
(
ε

δ

)
, (48)
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Figure 2. Cycles of type b for Rn (left) and R̃n (right). The solid line represents the

part of the cycle belonging to the i-th sheet, while the dashed curve is the remaining

part of the cycle, which lies in the (i+ 1)-th sheet. As for the cycles of type a, which are

the same for Rn and R̃n, we refer to Fig. 8 of [46].

where z andM are analogous to the ones in (46), and ε, δ are vector with entries 0 and 1/2.

The sum in (ε, δ) in (47) is intended over all the 2n−1 vectors ε and δ with these entries.

The parity of (48) as function of z is given by the parity of the characteristic, which is

the parity of the integer number 4ε · δ. There are 22(n−1) characteristics: 2n−2(2n−1 + 1)

are even and 2n−2(2n−1 − 1) are odd. In our following analysis only the trivial vector

z = 0 occurs and therefore we will adopt the shortcut notation: Θ[e](M) ≡ Θ[e](0|M)

and Θ(M) ≡ Θ(0|M) when the characteristic is vanishing.

In the computation of the partition function on higher genus Riemann surfaces, one

has to properly choose a canonical homology basis (i.e. a set of 2(n − 1) closed oriented

curves on the surface, the a and b cycles, which satisfy some specific intersection rules)

and a set of n− 1 holomorphic differentials. By integrating such differentials along the b

cycles one gets the period matrix of the Riemann surface. For a genus g Riemann surface,

the period matrix is a g × g complex symmetric matrix with positive definite imaginary

part [56, 57]. We refer the reader to [46] for a detailed analysis about the canonical

homology basis forRn. In particular, the canonical homology basis {ar, br ; 1 6 r 6 n−1}
corresponding to (45) has been discussed in Sec. 4 of [46] and we will adopt it throughout

this manuscript. In the left panel of Fig. 2 we show the j-th b cycle, which belongs to the

j-th sheet and to the (j + 1)-th sheet. Instead, the construction of aj (which intersects bj
only once) is more involved and therefore we refer the interested reader to Fig. 8 of [46].

The Riemann theta function with characteristic (48) occurs in the computation of

fermionic models on higher genus Riemann surfaces [56, 57]. The characteristic e specifies

the set of boundary conditions along the a and b cycles of the canonical homology basis

and this provides the so called spin structures of the model. The vector ε is determined

by the boundary conditions along the a cycles (εk = 0 for antiperiodic b.c. around ak and

εk = 1/2 for periodic b.c.), while δ is provided by the boundary conditions along the b

cycles (δk = 0 for antiperiodic b.c. around bk and δk = 1/2 for periodic b.c.).

3.2. Moments of the partial transpose for the free fermionic field theory

We are finally ready to derive the moments of the partial transpose Tr(ρT2A )n. The path

integral for ρT2A is given by (38) which is a sum of two different operators. The moments
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are then given by the sum of 2n terms that come from the expansion of the binomial.

Actually, since there is a double degeneration of these terms, the sum is only on 2n−1 terms.

Introducing, in analogy with the lattice computation, the notation ρ̃0(ζ, η) = ρ̃A(ζ, η) and

ρ̃1(ζ, η) = ρ̃A(ζ1,−ζ2; η1,−η2) = PA2 ρ̃APA2 , the 2n−1 terms in the sum for the moment of

order n can be written as∫ n∏
k=1

Dχ∗kDχk ρ̃0(−χn, χ1)
n−1∏
k=1

ρ̃pk(χk, χk+1), (49)

with pi = 0, 1. Each of these 2n−1 terms is a partition function of a free fermion on a

Riemann surface of genus n− 1 in which antiperiodic or periodic boundary condition are

imposed along the basis cycles.

At this point, before deriving the final result, we should discuss the Riemann surface

R̃n on which these partition functions are defined. The surface R̃n is defined by the

density matrix ρ̃A and has genus n−1 [5, 6], but it is different from the one defining TrρnA
(denoted in the previous section as Rn). Only for n = 2 they are the same torus (their

moduli are related by a modular transformation), but for n > 2 they are different. The

properties of this Riemann surface are discussed in details in App. C. The period matrix

τ̃(x) of R̃n for x ∈ (0, 1) is given by [6]

τ̃(x) = τ
(
x/(x− 1)

)
= R+ i I, R =

1

2
Q, (50)

where the elements of τ have been defined in (45) and the real and imaginary parts of τ̃(x)

areR and I respectively. Here it is important to observe thatQ is a very simple symmetric

integer matrix: it has 2 along the principal diagonal, −1 along the secondary diagonals and

0 for the remaining elements. In App. C.1 we report the detailed derivation of this result.

As for the cycles of R̃n providing the canonical homology basis {ãr, b̃r ; 1 6 r 6 n − 1}
which gives the period matrix (50), we find that ãr is the same as ar (we remind that R̃n

and Rn differ only for the way to join the sheets along A2), while the generic cycle b̃r is

obtained by deforming the cycle br as shown in Fig. 2.

An important ingredient at this point is the operator PA2 . For an arbitrary interval

C we can write

PC = (−1)
∫
C dx ψ̄(x)ψ(x) ≡ (−1)FC . (51)

where FC is the fermionic number operator in the interval C which was already introduced

long ago [58]. This operator is located along the interval C and it changes the fermionic

boundary conditions (from antiperiodic to periodic or viceversa) on a cycle whenever it

crosses the curve C. In (38) for ρT2A , we have that PA2 occurs both before and after ρ̃A.

This corresponds to the insertion of the operators (−1)FA2 above and below the cut along

A2.

Each term (49) is a partition function on R̃n with some specific boundary conditions

along the a and b cycles and it can be expressed in terms of Riemann theta functions.
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Explicitly, we have

Tr

[
ρ̃0

n−1∏
k=1

ρ̃pk

]
= c2

n

(
1− x
`1`2

)2∆n
∣∣∣∣Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣2, e =

(
0

δ

)
, (52)

where 0 is the vector made by n− 1 zeros. In this formula we have still to fix the vector

δ in terms of p, which is done as follows. Eq. (49) is evaluated on the n-sheeted Riemann

surface R̃n where the i-th sheet is associated to the ρ̃pi . On the sheets associated to ρ̃1,

two operators (−1)FA2 must be placed above and below A2. Then, the spin structure

e can be read off by counting how many times the cycles of the basis cross the curves

A2. Since the cycles ãi do not intersect A2 at all, we have that ε = 0, i.e. the boundary

conditions for the fermion along all the cycles ãr are antiperiodic. Instead, for b̃r this

analysis is non trivial because it intersects A2 on the r-th sheet and on the (r + 1)-th

sheet, as one can see from the right panel of Fig. 2. If b̃r crosses these curves an even

number of times, then δr = 0, otherwise δr = 1/2. It is not difficult to conclude that

2δi = (pi + pi+1) mod 2, (53)

whose inverse reads

pi =

( n−1∑
j=i

2δj

)
mod 2 =

1− (−1)2
∑n−1
j=i δj

2
. (54)

The simplest example of (52) is the term Trρ̃n0 (namely p = 0). This spin structure

has antiperiodic boundary conditions along all the cycles, i.e. ε = δ = 0. For this term

Ω̃n[e]2 = 1.

Thus, Tr
(
ρT2A
)n

can be written as a sum over all the allowed spin structures:

Tr
(
ρT2A
)n

= c2
n

(
1− x
`1`2

)2∆n 1

2n−1

∑
δ

rn(δ)

∣∣∣∣Θ[e](τ̃)

Θ(τ̃)

∣∣∣∣2, e =

(
0

δ

)
. (55)

The coefficient rn(δ) is

rn(δ) = 2n/2 cos

[
π

4

(
1 +

n−1∑
i=1

(−1)2
∑n−1
j=i δj

)]
. (56)

It can be seen that rn(δ) ∈ {−2n/2, 0, 2n/2} for even n and rn(δ) ∈ {−2(n−1)/2, 2(n−1)/2}
for odd n.

The analytic expression given by (55) and (56) is the main result of this manuscript.

When the size of the intervals is very small with respect to their distance (`1, `2 � d. i.e.

x� 1), it is possible to expand (55) in powers of x, as shown in App. C.2 where we find

the first non trivial term of this expansion.

There is also a very interesting by-product of our analysis which is given by (52)

providing a very deep technical insight. Indeed Eq. (52) shows also that each of the 2n−1

terms in the sum over p in (14) has a well defined continuum limit which is the partition

function of the free fermion on R̃n with a particular assignment of fermionic boundary

conditions, i.e. always antiperiodic along all the a cycles, while the b.c. along the b cycles

are specified by δ (we recall, antiperiodic for δi = 0 and periodic otherwise).
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3.2.1. Dihedral symmetry. The Riemann surfaces Rn and R̃n enjoy a dihedral symmetry

Zn × Z2, as already noticed in [45]. The symmetry Zn comes from the invariance under

cyclic permutation of the n sheets and the symmetry Z2 corresponds to take the sheets

in the reversed order and to reflect all of them with respect to the real axis. The

former symmetry comes from the fact that Rn and R̃n are obtained through the replica

construction and the latter one occurs because the endpoints of the intervals are on the

real axis. Indeed, the complex equations (73) and (74), which define the Riemann surfaces

Rn and R̃n, are invariant under complex conjugation.

In [45, 46] the symplectic matrices which implement the dihedral symmetry of Rn

have been written explicitly and in App. C.3 this analysis has been extended to R̃n

as well (the symmetry Z2 is different in the two cases). These transformations act

on the period matrix and reshuffle the characteristics, but the functions and Ω̃n[e] in

(63) remain invariant. Moreover, both the transformations associated to the dihedral

symmetry leave the coefficient rn(δ) in (56) invariant. Thus, the terms in the sum (55)

whose characteristics are related by one of these modular transformations are equal and

the sum can be written in a simpler form by choosing a representative term for each

equivalence class, whose coefficient is given by (56) multiplied by the number of terms of

the equivalence class.

Exploiting these symmetries, one can write the explicit expressions given in Sec. 6.3

of [59] for 2 6 n 6 5. Beside the goal of having more compact analytic expressions, the

dihedral symmetry is very helpful also from the numerical point of view because it allows

to reduce the exponentially large (in n) number of terms in (55).

Looking at Eq. (13) on the lattice, the Zn symmetry corresponds to the cyclic

permutation of the n factors within each trace. Instead, the Z2 symmetry comes from the

fact that ρ̃0 and ρ̃1 are not separately hermitian but the hermitian conjugation exchange

them, so that ρT2A is hermitian. However, as already noticed, such exchange leaves any

term of the sum unchanged.

3.3. Self-dual boson

In this subsection we show that the expression (55) for Tr
(
ρT2A
)n

of the Dirac free fermion

is equal to the one for the compactified boson at its self-dual radius.

The analytic formula for Tr
(
ρT2A
)n

of the compactified boson for a generic value of

the compactification radius has been derived in [6] by studying the partition function of

the model on the Riemann surface R̃n. At the self-dual radius, it becomes (see Eq. (146)

of [6] for η = 1)

Tr
(
ρT2A
)n

= c2
n

(
1− x
`1`2

)2∆n Θ(T )

|Θ(τ̃)|2
, T =

(
i I R
R i I

)
, (57)

where the matrices occurring in this expression have been defined in (50). The Riemann



Towards entanglement negativity for a 1D free fermion 15

theta function Θ(T ) in the numerator can be written as follows

Θ

(
i I R
R i I

)
=
∑
ε

∣∣∣∣Θ[ ε0
]
(2τ̃)

∣∣∣∣2 =
∑
ε

e2πi ε·Q·ε Θ

[
ε

0

]
(2τ̃)2, (58)

where in the first step we have used (3.6b) of [57] and in the second one −2τ̃ ∗ = 2τ̃ − 2Q.

Then, by specialising the addition formula reported in [55] (pag. 4) to our case, we find

Θ

(
i I R
R i I

)
=

1

2n−1

∑
ε,δ

(−1)4ε·δ e2πi ε·Q·ε Θ

[
0

δ

]
(τ̃)2 =

1

2n−1

∑
δ

mn(δ) Θ

[
0

δ

]
(τ̃)2, (59)

where

mn(δ) =
∑
ε

(−1)4ε·δ e2πi ε·Q·ε =
∑
ε

e4iπ(ε·Q2 ·ε+ε·δ). (60)

In App. D we show that mn(δ) can be written as the partition function of a classical Ising

spin system, where ε play the role of the spin variables and the δ are the local magnetic

fields. In the same appendix we also employ standard transfer matrix techniques to prove

that mn(δ) = rn(δ) (see (56) and (60)).

3.4. Numerical checks

In [59] we have already shown that Tr(ρT2A )n for n = 3, 4, 5 converges in the continuum

limit to the CFT predictions (55). In this paper we have given a set of more stringent

relations (52) between each term in the sum for Tr(ρT2A )n appearing both in CFT and on

the lattice. The goal of this subsection is to provide explicit numerical evidence of this

term-by-term correspondence for n = 2, 3, 4.

In order to evaluate numerically the traces of product of these matrices, we employ

the techniques first developed in [60] for TrρnA and recently used to compute Tr(ρT2A )n in

[59]. Indeed, being the tight-binding Hamiltonian (1) quadratic in the fermionic operators,

the ground state reduced density matrix ρA is Gaussian. Moreover, ρ̃A in (12) is Gaussian

as well and, since the string operator PC can be written as the exponential of a quadratic

operator, the density matrix PA2 ρ̃APA2 is also Gaussian. Nevertheless, the sum of these

two matrices in (12) is not Gaussian (this is indeed the main difficulty compared to bosonic

models in which the partial transpose is itself Gaussian [61, 62, 63, 64]). By exploiting

the fact that for Gaussian states all the information of the system is encoded in the

correlation matrices, the computations can be performed in a polynomial time in terms

of the total size of the subsystem. In particular, in our case the correlation matrices of

ρ̃A and PA2 ρ̃APA2 can be obtained from the one of ρA, as described in [26, 59].

The lattice computations have been performed in an infinite chain. The disjoint

blocks A1 and A2 have been taken with the same size `1 = `2 ≡ `, while the size of the

block B1 separating them is d. Thus, the four point ratio (43) becomes

x =

(
`

`+ d

)2

, (61)



Towards entanglement negativity for a 1D free fermion 16

Figure 3. The terms occurring in Tr(ρT2

A )n for the free fermion (see (55)), according to

the correspondence (52). Here we show n = 2 (top panels) and n = 3 (bottom panels).

For each group of identical terms, only one representative has been plotted. In the left

panels, the term with p = 0 has been divided by its CFT counterpart (δ = 0), in order

to simplify the residual dependence on `1 and `2. The extrapolated points (red crosses)

are obtained through a fit of the data according to the scaling function (64) and they

agree with the CFT predictions (solid lines).

and configurations with the same value of `/d correspond to the same x.

Referring to Eq. (14), let us introduce the following lattice quantities

J̃ lat
n = Trρ̃n0 , Ω̃lat

n [p]2 =
1

Trρ̃n0
Tr

[
ρ̃0

n−1∏
k=1

ρ̃pk

]
, (62)

which can be evaluated as explained in [59]. We also introduce their CFT continuum

limit:

J̃n ≡ c2
n

(
1− x
`1`2

)2∆n

, Ω̃n[e] ≡
∣∣∣∣Θ[e](τ̃(x))

Θ(τ̃(x))

∣∣∣∣. (63)

These CFT values are approached by taking configurations with increasing `, keeping the

ratio `/d fixed. As discussed in Sec. 3.2.1, many terms in the sum (14) are equal because

of the properties of the trace (in the continuum, this degeneracy is due to the dihedral

symmetry of the Riemann surface).

In order to deal with the finite size effects, we perform an accurate scaling analysis,

as done in [60] for TrρnA and in [59] for Tr(ρT2A )n. From general CFT arguments it has been
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Figure 4. The terms occurring in Tr(ρT2

A )4 for the free fermion (see (55)), according

to the correspondence (52). For each of the three groups of identical terms, only one

representative has been plotted. In the top panel, the term with p = 0 has been divided

by its CFT counterpart (δ = 0), in order to simplify the residual dependence on `1 and

`2. The extrapolated points (red crosses) are obtained through a fit of the data according

to the scaling function (64) and they agree with the CFT predictions (solid lines).

shown that these quantities display some unusual corrections to the scaling in ` described

by a power law term with exponent δn = 2h/n, being h the smallest scaling dimension of

a relevant operator inserted at the branch points [65, 66, 67, 68]. For the Dirac fermion

h = 1 and terms of the form `−2m/n are present, for any positive integer m. Because of

the slow convergence of these terms (which becomes slower and slower for increasing n),

typically it is necessary to include in the scaling function many of them. The most general

finite-` ansatz for Ω̃n takes the following form

Ω̃lat
n [p]2 = Ω̃2

n[e] +
ω

(1)
n (x)

`2/n
+
ω

(2)
n (x)

`4/n
+
ω

(3)
n (x)

`6/n
+ . . . , (64)

where Ω̃[e] is defined in (63) and p and e are related through (53) and (54). For the

J̃ lat
n /J̃n, a scaling function similar to (64) can be studied. Fitting the data with (64),

the more terms we include, the more precise the fit could be. Nevertheless, since we

have access to limited values of `, by using too many terms overfitting problems may be

encountered, which lead to very unstable results. The number of terms to be included in

(64) has been chosen in order to get stable fits. We find that every term Ω̃n[e] follows the
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scaling (64) and the extrapolated value agrees with the corresponding CFT result.

Our numerical results are shown in Fig. 3 for n = 2 (top panels) and n = 3 (bottom

panels), while Fig. 4 is about the n = 4 case. As for the prefactor, the ratio J̃ lat
n /J̃n has

been considered in order to eliminate the trivial dependence on ` which survives in the

continuum limit. The solid lines are the CFT predictions, which are given by (52).

4. Conclusions

In this manuscript we studied the moments of the partial transpose of the reduced density

matrix Tr(ρT2A )n for two disjoint intervals in the conformal field theory of the massless Dirac

fermion. Our main result is a closed analytic form for these moments of arbitrary order,

i.e. Eq. (55). For n = 3, 4, 5 this formula was anticipated in Ref. [59], but we extend here

to arbitrary n and provide its full derivation. The analytic computation of the logarithmic

negativity E through the replica limit of (55) for even ne → 1 is beyond our knowledge.

It turned out that these moments are identical, for arbitrary order, to those of

the compactified boson at the self-dual point. This equality comes from the explicit

computation and we miss a proper understanding of this fact. It was already noticed that

for the moments of the reduced density matrix of two disjoint intervals TrρnA, the result

for the free fermion [41, 69] and the one for the compactified boson at the self-dual radius

[38] are equal and very easy (they are both given by (42) with Fn(x) = 1). This is not the

case for three or more disjoint intervals [45, 46]. This unexpected equivalence has been

investigated in [45], where also other results have been found, based on the fact that τ(x)

is purely imaginary when x ∈ (0, 1). For the partial transpose, the period matrix τ̃(x) of

R̃n in (50) has a non vanishing real part. Nevertheless, here we have shown that Tr
(
ρT2A
)n

for the free fermion is equal to the one for the self-dual boson, a property that does not

follow from the analysis of [45]. The equality of all the moments obviously implies also the

equality of the negativities. Since the negativity is directly measurable by means of tensor

network algorithms (as e.g. done in [21, 7] for the Ising model), it would be very interesting

to check numerically the identity between the negativity of the tight-binding model and

the isotropic Heisenberg antiferromagnet (whose continuum limit is the self-dual boson).

This is a highly non trivial prediction.

We point out that an interesting technical byproduct of this paper is a one-to-one

correspondence between each of the 2n−1 terms appearing in the lattice formulation

of the moments Tr(ρT2A )n and the partition function of the free fermion on R̃n with

a particular assignment of fermionic boundary conditions. This correspondence has

been explicitly checked against lattice numerical computations extending the numerical

analysis of Ref. [59] where only the overall sum was considered. The consequence of

this correspondence for the moments of both the reduce density matrix and its partial

transpose in spin models with a free fermionic representation will be explored elsewhere

[70].
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Appendices

A. Reduced density matrix and its partial transpose on the lattice

In this appendix we briefly review the main tools employed in this manuscript to study

the partial transpose for free fermions on the lattice.

Given the reduced density matrix (7), it is convenient to distinguish the terms having

an even or odd number of fermionic operators in A2 (notice that the parity of operator in

A2 is the same of the operators in A1) by introducing

ρeven =
1

2`1+`2

∑
even

w12O1O2, ρodd =
1

2`1+`2

∑
odd

w12O1O2. (65)

Thus ρA = ρeven+ρodd. The partial transposition with respect to A2 in (10) acts differently

on the two operators in (65). In particular [26]

ρT2even =
1

2`1+`2

∑
even

(−1)µ2/2w12O1O2, ρT2odd =
1

2`1+`2

∑
odd

(−1)(µ2−1)/2w12O1O2. (66)

Defining the following Gaussian matrix ρ̃A (which is not a density matrix, being not

hermitian)

ρ̃A =
1

2`1+`2

∑
iµ2w12O1O2, (67)

and also ρ̃even and ρ̃odd as done in (65) for ρA, the partial transpose of ρA becomes

ρT2A = ρ̃even − i ρ̃odd. (68)

The matrices ρ̃even and ρ̃odd in (68) can be written through the string PA2 of the Majorana

operator along A2. Since PA2a
x,y
j PA2 = (−1)δj∈A2 ax,yj , one finds

ρ̃even =
1

2

(
ρ̃A + PA2 ρ̃APA2

)
, ρ̃odd =

1

2

(
ρ̃A − PA2 ρ̃APA2

)
. (69)

Thus, plugging (69) into (68), the final expression for ρT2A in (12) is obtained [26].
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B. A check for n = 2

In this appendix, by employing the formalism described in Sec. 2.2 and Sec. 2.3, we check

the standard relation between the reduced density matrix of two disjoint intervals and its

partial transpose

Tr
(
ρT2A
)2

= Tr
(
ρ2
A

)
. (70)

From (12), it is immediate to observe that Tr
(
ρT2A
)2

= Tr (ρ̃APA2 ρ̃APA2). Then, by using

(18), we can write

Tr (ρ̃APA2 ρ̃APA2) = (71)

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, −ζ2|ρ̃A|η1, η2〉 〈η1, η2|PA2 ρ̃APA2|ζ1, ζ2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, −ζ2|ρ̃A|η1, η2〉 〈η1, −η2|ρ̃A|ζ1, −ζ2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗ζe−η
∗η 〈−ζ1, η

∗
2|ρA|η1, ζ

∗
2 〉 〈η1, −ζ∗2 |ρA|ζ1, η

∗
2〉

=

∫
Dζ∗Dζ Dη∗Dη e−ζ

∗
1 ζ1+ζ∗2 ζ2e−η

∗
1η1+η∗2η2 〈−ζ1, η2|ρA|η1, ζ2〉 〈η1, −ζ2|ρA|ζ1, η2〉 ,

where in the last step the change of variables ζ2 → ζ∗2 , η2 → η∗2 has been employed. Then,

by noticing that the relations in (18) can be slightly modified as follows

− I =

∫
dζ∗dζ eζ

∗ζ |ζ〉 〈−ζ| , −Tr Ô =

∫
dζ∗dζ eζ

∗ζ 〈ζ| Ô |ζ〉 , (72)

we can conclude that (72) is exactly Tr (ρ2
A).

C. On the Riemann surface R̃n

In this appendix we derive with all the details some results about the Riemann surface

R̃n and its period matrix τ̃(x) in (50) that are employed in the main text.

Given the two disjoint intervals A1 = (u1, v1) and A2 = (u2, v2) whose endpoints are

ordered as u1 < v1 < u2 < v2, TrρnA is the partition function of the model on the Riemann

surface Rn which is defined by the following algebraic curve in C2 (parameterised by the

complex variables z and y) [38]

yn = (z − u1)(z − u2)
[
(z − v1)(z − v2)

]n−1
. (73)

The Riemann surface Rn, which is an n sheeted cover of the complex plane, has genus

n− 1 and it has been studied in detail in [71, 46], where its generalisation to any number

of disjoint intervals (whose genus is (n−1)(N−1) for N intervals) has been also discussed.

By going around u1 and u2 clockwise, one goes from the j-th to the (j+1)-th sheet, while

going around v1 and v2 clockwise, one moves to the (j − 1)-th one.

In order to compute Tr(ρT2A )n, one has to find the partition function of the model on

a different Riemann surface R̃n, which is obtained by exchanging u2 ↔ v2 in (73), i.e.

yn = (z − u1)(z − v2)
[
(z − v1)(z − u2)

]n−1
. (74)
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The Riemann surface R̃n has genus n−1 and the sheets are joined in a different way with

respect to Rn. Indeed, by encircling u2 clockwise we move from the j-th to the (j− 1)-th

sheet while by encircling v2 clockwise the (j + 1)-th sheet is reached.

While the period matrix τ(x) of Rn is purely imaginary (see (45)), the period matrix

τ̃(x) for R̃n has a non vanishing real part. In Sec. C.1 we show that Re[τ̃(x)] has a

very simple form. In Sec. C.2 we consider the moments Tr
(
ρT2A
)n

in the regime of small

intervals x → 0 and in Sec. C.3 we provide a detailed discussion of the Z2 part of the

dihedral symmetry for R̃n.

C.1. The real and imaginary part of the period matrix τ̃(x)

In this subsection we want to write explicitly the real and the imaginary part of the period

matrix τ̃(x) given by (50). The real part Re[τ̃(x)] turns out to be a simple tridiagonal

matrix with half-integer entries.

Let us introduce the following ratios of hypergeometric functions, which enter in the

expressions for the period matrices τ(x) and τ̃(x) (see (45) and (50))

τr(x) ≡ i
2F1(r, 1− r; 1; 1− x)

2F1(r, 1− r; 1;x)
, τ̃r(x) ≡ τr

( x

x− 1

)
≡ α̃r(x) + iβ̃r(x), (75)

where 0 < r < 1 and x ∈ (0, 1). Moreover, we also define

Ar(x) ≡ Γ(1− 2r)

Γ(1− r)2

2F1(r, r; 2r; 1− x)

2F1(r, r; 1;x)
, (76)

Br(x) ≡ Γ(2r − 1)

Γ(r)2
(1− x)1−2r 2F1(1− r, 1− r; 2(1− r); 1− x)

2F1(r, r; 1;x)
. (77)

By employing the expressions given in (87) of [6], one finds that

α̃r(x) = sin(πr)
[
Ar(x) + Br(x)

]
, β̃r(x) = cos(πr)

[
Ar(x)− Br(x)

]
. (78)

At this point we need the following identity (see e.g. Eq. (1) at pag. 108 of Ref. [72])

2F1(a, b; c; z) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− z) (79)

+
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
(1− z)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− z),

which holds for |arg(1− z)| < π. By specialising (79) to the case of (a, b, c) = (r, r, 1) and

z = x ∈ (0, 1), from (76) and (77) one finds that

Ar(x) + Br(x) = 1. (80)

From this expression it is clear that the x dependence disappears from the real part of

τ̃r(x) and hence from the period matrix. Indeed, using (78) and (80) in (45) one gets (see

also (50))

τ̃(x)i,j =
2

n

n−1∑
k=1

sin(πk/n) τ̃k/n(x) cos[2π(k/n)(i− j)] =
1

2

[
Q
]
i,j

+ i
[
I(x)

]
i,j
, (81)
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where the sum giving the real part can be explicitly performed, finding that the matrix

Q has integer elements which read

[Q]i,j ≡ 2δi,j − δ|i−j|,1, (82)

namely Q is a symmetric tridiagonal matrix, with 2 on the main diagonal and −1 on the

first diagonals. On the other hand, the imaginary part can be written as follows,

[
I(x)

]
i,j

=
2

n

n−1∑
k=1

sin(πk/n) β̃k/n(x) cos[2π(k/n)(i− j)], (83)

with

β̃r(x) ≡ f̃r(1− x)− f̃1−r(1− x)

(1− x)r 2F1(r, r; 1;x)
cos(πr), f̃r(x) ≡ Γ(1− 2r)

Γ(1− r)2
xr 2F1(r, r; 2r;x). (84)

This expression for I(x) can be further simplified. Plugging (80) into the second

expression of (78), we have

β̃r(x) = cos(πr)
[
2Ar(x)− 1

]
. (85)

For 0 < x < 1 we can rewrite Ar(x) as follows [72]

Ar(x) =
1

2 cos(πr)

[
e−iπr + eiπr x−r

2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

]
. (86)

Since Ar(x) is real for 0 < x < 1, the vanishing of its imaginary part gives

1

xr

[
tan(πr) Re

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
+ Im

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)]
= tan(πr). (87)

On the other hand, by writing Ar(x) as its real part and plugging the resulting expression

in (85), one finds

β̃r(x) =
1

xr

[
cos(πr) Re

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
− sin(πr) Im

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)]
. (88)

Finally, using (87) we can write

β̃r(x) = cos(πr)− x−r

sin(πr)
Im

(
2F1(r, r; 1; 1/x)

2F1(r, r; 1;x)

)
. (89)

The matrix I(x) can be easily written by plugging (89) into (83) and noticing that the

sum over the cosine vanishes. The result reads

[
I(x)

]
i,j

= − 2

n

n−1∑
k=1

x−k/n Im

(
2F1(k/n, k/n; 1; 1/x)

2F1(k/n, k/n; 1;x)

)
cos[2π(k/n)(i− j)]. (90)

The result (82) is employed in Sec. 3.3 and in App. C.3.
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C.2. Short intervals regime

In this appendix we study the Tr
(
ρT2A
)n

for the free fermion (55) in the limit of short

intervals, i.e. when x→ 0.

In the expression (55), only Riemann theta functions with ε = 0 occur, which are

given by

Θ

[
0

δ

](
τ̃(x)

)
= 1 +

∑
m 6=0

eiπ(m· Q·m+2δ·m) e−πm· I·m, (91)

where Q is independent of x. Expanding β̃k/n(x) in (84) for x→ 0, one finds

β̃q(x) = −sin(πq)

π

[
log(x) + 2γE + ψ(q) + ψ(1− q)

]
+O(x). (92)

Plugging this expansion into (83) and (91), one gets that the leading term is xm· Q·m.

The exponent m · Q ·m for m ∈ Zn−1 has been already analyzed in [39], finding that its

minimum is 1, which is obtained for the following vectors

m± ≡
( j2︷ ︸︸ ︷

0 , . . . , 0︸ ︷︷ ︸
j1

,±1 , . . . ,±1 , 0 , . . . , 0
)
, m± 6= 0, 0 6 j1 < j2 6 n− 1, (93)

namely m± · Q ·m± = 1. Then, by applying again the results of [39] (notice that the

vectors m+ and m− give the same contribution) to (91), we find

Θ

[
0

δ

](
τ̃(x)

)
= 1− x

2n2

∑
m+

(−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . . , (94)

where the dots denote o(x) terms. Thus, for the generic term occurring in the sum (55)

we have

Ω̃n[e] = 1− x

2n2

∑
m+

1 + (−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . . , e =

(
0

δ

)
. (95)

Plugging this result into (55), we get the first term of the x→ 0 expansion of Tr
(
ρT2A
)n

,

which is

Tr
(
ρT2A
)n

= J̃n

[
1− x

2n−1 n2

∑
δ

rn(δ)
∑
m+

1 + (−1)2δ·m+

sin2(π(j2 − j1)/n)
+ . . .

]
. (96)

C.3. The Z2 part of the dihedral symmetry of R̃n

In this subsection we briefly discuss the most peculiar aspect of the dihedral symmetry

for the Riemann surface R̃n occurring in the computation of Tr
(
ρT2A
)n

(see Sec. 3.2.1).

The Riemann surface Rn has a dihedral symmetry Zn × Z2 due to the invariance

under cyclic permutation of the sheets (Zn) and the complex conjugation (Z2). For

a genus g Riemann surface, the modular transformations are given by the symplectic

matrices Sp(2g,Z) [56, 57]. The dihedral symmetry can be identified with a subgroup
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of the modular transformations acting on Rn which has been discussed in [45, 46]. In

particular, these peculiar modular transformations map the a cycles among themselves

and the b cycles among themselves, leaving the period matrix τ(x) unchanged.

Also the surface R̃n has a dihedral symmetry Zn×Z2 but, while the cyclic permutation

(Zn) is exactly the same one discussed above for Rn, the complex conjugation is slightly

different because it mixes a and b cycles. Let us remind that the complex conjugation

corresponds to reverse the order of the sheets and to reflect all of them with respect to

the real axis. Considering the canonical homology basis {ãr, b̃r; 1 6 r 6 n−1} introduced

in Sec. 3.2 (see Fig. 2) [46], this transformation acts as follows(
ã′

b̃
′

)
= Minv ·

(
ã

b̃

)
, Minv =

(↔
I n−1 0

−
↔
Q

↔
I n−1

)
∈ Sp

(
2(n− 1),Z

)
, (97)

where we introduced the notation of the double-headed arrow above a matrix to indicate

that the columns have to be taken in the reversed order (Ik is the k × k identity matrix

and Q is given by (82)). Under the symplectic transformation defined in (97), the period

matrix τ̃ (50) changes as follows

τ̃ ′ =
↔
I · τ̃ ·

↔
I −

↔
Q ·

↔
I = τ̃ −Q = −R+ i I = − τ̃ ∗, (98)

while for the characteristics of the Riemann theta functions we have(
ε′

δ′

)
=

(↔
I 0
↔
Q

↔
I

)
·
(
ε

δ

)
. (99)

Notice that the powers of Minv read

M2k−1
inv =

( ↔
I 0

−(2k − 1)
↔
Q

↔
I

)
, M2k

inv =

(
I 0

−2kQ I

)
, (100)

(in particular, notice that M2
inv 6= I) so that, by applying (98) k times one finds

τ̃ (k) = τ̃ − kQ. (101)

As for the change of the Riemann theta function under the modular transformation in

(97), because of the particular form of Q, it is easy to show that for k even it is left

invariant (a part for an overall sign), while for k odd it becomes its complex conjugate,

up to an overall sign. Since in our formulas the modulus of the Riemann theta function

always occurs, the terms occurring in our sum over the characteristics are invariant under

this transformation. Thus, Minv can be the modular transformation representing the Z2

of the dihedral symmetry, even if M2
inv 6= I.
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D. Details on the computation for the self-dual boson

In this appendix we show the equality mn(δ) = rn(δ) between the coefficient mn(δ) in

(60), coming from the self-dual boson approach, and the coefficient rn(δ) in (56) occurring

in the expression obtained through the free fermion analysis.

Considering mn(δ) in (60), the expression in the exponent can be written as follows

ε · Q
2
· ε+ ε · δ = −

n−2∑
i=1

εi εi+1 +
n−1∑
i=1

ε2
i +

n−1∑
i=1

εiδi. (102)

Then, defining the spin variables σi = 4εi − 1 = ±1 and local magnetic fields hi = 4δi,

we find that mn(δ) is equal to the partition function Zn of n − 1 Ising spins in a binary

magnetic field hi = 0, 2 (a part for the first and last site), which reads

Zn = e
iπ
4 (

∑
i hi+n)

∑
σ

exp

[
i
π

4

(
−

n−2∑
i=1

σiσi+1 +
n−1∑
i=1

σihi + σ1 + σn−1

)]
. (103)

Given this Ising model representation, we can compute mn(δ) through standard transfer

matrix techniques. Following [73], let us introduce the conditioned partition function with

the last spin set to µ, namely

Zn(µ) = e
iπ
4 (

∑
i hi+n)

∑
σ

exp

[
iπ

4

(
−

n−3∑
i=1

σi σi+1 − µσn−2 +
n−2∑
i=1

σihi + µhn−1 + σ1 + µ

)]
.

(104)

Then, by adding one spin ε to the partition function, it becomes

Zn+1(ε) = e
iπ
4 (

∑
i hi+n) × (105)

×
∑
µ=±1

∑
σ

exp

[
iπ

4

(
−

n−3∑
i=1

σiσi+1 − µσn−2 − µ ε+
n−2∑
i=1

σi hi + µhn−1 + ε hn + σ1 + ε

)]
.

After some algebra, one realizes that

Zn+1(+) = (−1)2δn [Zn(+)− Zn(−)] , Zn+1(−) = Zn(+) + Zn(−). (106)

and these relations give the transfer matrix

T̂ (δ) =
1√
2

(
(−1)2δ −(−1)2δ

1 1

)
, δ ∈

{
0, 1/2

}
. (107)

We also need the conditioned partition functions for a single spin, which read

Z2(+) = − e
iπ
2
h1 , Z2(−) = 1. (108)

Then, the partition function for n− 1 spins in (103) is given by

Zn = Zn(+) + Zn(−) = (109)

= 2
n
2
−1
(

1 1
) 2∏
k=n−1

T̂ (δk)

(
−(−1)2δ1

1

)
= 2

n−1
2

(
1 1

) 1∏
k=n−1

T̂ (δk)

(
0

1

)
.
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In order to compute the matrix product in (109), it is convenient to perform a change of

basis which diagonalises T̂ (0), namely

T (δ) = U † T̂ (δ)U, U =
1

2

(
1 + i −(1 + i)

1− i 1− i

)
. (110)

From (107) and (110) we can explicitly write the transfer matrix in the new basis

T (0) =
1√
2

(
1 + i 0

0 1− i

)
, T (1/2) =

1√
2

(
0 1− i

1 + i 0

)
, (111)

and therefore the partition function (109) can be rewritten as follows

Zn = 2
n
2
−1
(

1 1
)
T (0)

1∏
k=n−1

T (δk)

(
1

1

)
. (112)

Now, it is convenient to move all T (0)’s in the product of (112) to the left of all the

T (1/2)’s. To do this, one observes that T (0)T (1/2) = T (1/2)T (0)−1 and T (1/2)T (0) =

T (0)−1T (1/2). By employing the latter rule, one finds

Zn = 2
n
2
−1
(

1 1
)
T (0)1+

∑
i(1−2δi)(−1)

∑n−1
j=i

2δj

T (1/2)
∑
i 2δi

(
1

1

)
. (113)

The factor 1 − 2δi within the sum in the exponent of T (0) selects only the sites where

δi = 0, while the other factor (−1)
∑n−1
j=i 2δj counts all the T (1/2)’s on the left of site i. The

exponent of T (0) can be rewritten as

s(δ) = 1 +
n−1∑
i=1

(1− 2δi)(−1)
∑n−1
j=i 2δj = 1 +

1− (−1)
∑
i 2δi

2
+

n−1∑
i=1

(−1)
∑n−1
j=i 2δj . (114)

Since T (0) is diagonal, its powers can be easily performed. Moreover, since T (1/2)2 = I2,

every integer power of T (1/2) is simply I2 if the exponent is even, and T (1/2) otherwise.

Thus, we have

T (0)s(δ) =

(
e

iπ
4
s(δ) 0

0 e−
iπ
4
s(δ)

)
, (115)

T (1/2)2
∑
i δi =

(
[1 + (−1)

∑
i 2δi ]/2 e−

iπ
4 [1− (−1)

∑
i 2δi ]/2

e
iπ
4 [1− (−1)

∑
i 2δi ]/2 [1 + (−1)

∑
i 2δi ]/2

)
. (116)

Finally, (113) tells us that we just need to multiply this two matrices and to sum the four

elements of the resulting matrix. After some of algebra, we get

mn(δ) = 2n/2
[

1 + (−1)
∑
i 2δi

2
cos
(π

4
s(δ)

)
+

1− (−1)
∑
i 2δi

2
cos
(π

4
(s(δ)− 1)

)]
. (117)

By inspection of the two cases of
∑

i 2δi even or odd, it is clear that (117) equals (56).
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