931 research outputs found

    Le point sur l'ergométrie en 2012 dans le diagnostic de la maladie coronarienne.

    Get PDF
    Background In patients presenting with acute cardiac symptoms, abnormal ECG and raised troponin, myocarditis may be suspected after normal angiography. Aims To analyse cardiac magnetic resonance (CMR) findings in patients with a provisional diagnosis of acute coronary syndrome (ACS) in whom acute myocarditis was subsequently considered more likely. Methods and results 79 patients referred for CMR following an admission with presumed ACS and raised serum troponin in whom no culprit lesion was detected were studied. 13% had unrecognised myocardial infarction and 6% takotsubo cardiomyopathy. The remainder (81%) were diagnosed with myocarditis. Mean age was 45615 years and 70% were male. Left ventricular ejection fraction (EF) was 58610%; myocardial oedema was detected in 58%. A myocarditic pattern of late gadolinium enhancement (LGE) was detected in 92%. Abnormalities were detected more frequently in scans performed within 2 weeks of symptom onset: oedema in 81% vs 11% (p<0.0005), and LGE in 100% vs 76% (p<0.005). In 20 patients with both an acute (<2 weeks) and convalescent scan (>3 weeks), oedema decreased from 84% to 39% (p<0.01) and LGE from 5.6 to 3.0 segments (p¼0.005). Three patients presented with sustained ventricular tachycardia, another died suddenly 4 days after admission and one resuscitated 7 weeks following presentation. All 5 patients had preserved EF. Conclusions Our study emphasises the importance of access to CMR for heart attack centres. If myocarditis is suspected, CMR scanning should be performed within 14 days. Myocarditis should not be regarded as benign, even when EF is preserved

    Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2

    Get PDF
    Neural stem cells (NSCs), when stimulated with epidermal growth factor (EGF) or fibroblast growth factor-2 (FGF-2), have the capacity to renew, expand, and produce precursors for neurons, astrocytes, and oligodendrocytes. We postulated that the early appearance of insulin-like growth factor (IGF-I) receptors during mouse striatum development implies a role in NSC regulation. Thus, we tested in vitro the action of IGF-I on the proliferation of striatal NSCs. In the absence of IGF-I, neither EGF nor FGF-2 was able to induce the proliferation of E14 mouse striatal cells. However, addition of IGF-I generated large proliferative clusters, termed spheres, in a dose-dependent manner. The newly generated spheres were multipotent, and clonal analysis revealed that EGF or FGF-2, in the presence of IGF-I, acted directly on NSCs. The actions of IGF-I suggest distinct modes of action of EGF or FGF-2 on NSCs. First, continuous versus delayed administration of these neurotrophic factors showed that neither IGF-I nor EGF had an effect on NSC survival, whereas FGF-2 promoted the survival or maintenance of the stem cell state of 50% of NSCs for 6 d. Second, short-term exposure to IGF-I induced the proliferation of NSCs in the presence of EGF, but not of FGF-2, through an autocrine secretion of IGF-I. These findings suggest that IGF-I is a key factor in the regulation of NSC activation and that EGF and FGF-2 control striatal NSC proliferation, in part, through distinct intracellular mechanisms

    Broadcasting a Sinister ‘Jacobean’ Aesthetic from the Sam Wanamaker Playhouse: Sightlines, Camerawork and Websterian Dramaturgy in Ian Russell’s The Duchess of Malfi (BBC Four, 2014)

    Get PDF
    This essay examines the television broadcast of John Webster's The Duchess of Malfi in May 2014, recorded with six cameras across two performances of Dominic Dromgoole's inaugural production at the Sam Wanamaker Playhouse by Ian Russell a few months earlier. The broadcast and its paratextual framing are of interest because they clearly stand apart from their Shakespearean counterparts. The venue of the Sam Wanamaker Playhouse, the target medium of television, and Webster's distinctly non-Shakespearean dramaturgy, the essay argues, played a crucial role in creating a quite idiosyncratic televisual "Jacobean" aesthetic that stands at odds with the expectations surrounding cinematic Shakespeare broadcasts. This aesthetic includes a deliberately dark tone that includes moments of actual invisibility, an approach to verse speaking that cuts across lyrical lines and breaks up soliloquies, multifaceted characterization that resembles the fragmentation of the body familiar from the early modern poetic blazon, and "sinister" camerawork which disrupts "suture" and dissociates the television viewer from the audience in the theatre. The essay concludes that the specifically "Jacobean" features of this broadcast enable a reassessment of some key conventions associated with Shakespeare broadcasts and expose the extent to which the uncritical acceptance of specifically Shakespearean features as normative extends even to the hybrid medium of theatre broadcasting

    Inflammation, Immunity, and Vaccines for Helicobacter

    Get PDF
    Helicobacter pylori represents the major etiologic agent of gastritis, gastric, and duodenal ulcer disease and can cause gastric cancer and mucosa-associated lymphoid tissue B-cell lymphoma. It is clear that the consequences of infection reflect diverse outcomes of the interaction of bacteria and host immune system. The hope is that by deciphering the deterministic rules – if any – of this interplay, we will eventually be able to predict, treat, and ultimately prevent disease. Over the past year, research on the immunology of this infection started to probe the role of small noncoding RNAs, a novel class of immune response regulators. Furthermore, we learned new details on how infection is detected by innate pattern recognition receptors. Induction of effective cell-mediated immunity will be key for the development of a vaccine, and new work published analyzed the relevance and contribution of CD4 T helper cell subsets to the immune reaction. Th17 cells, which are also induced during natural infection, were shown to be particularly important for vaccination. Cost-efficiency of vaccination was re-assessed and confirmed. Thus, induction and shaping of the effector roles of such protective Th populations will be a target of the newly described vaccine antigens, formulations, and modes of application that we also review here

    Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    Get PDF
    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activit

    Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus.

    Get PDF
    To date, delivery of neurotrophic factors has only allowed to transiently protect axotomized facial motoneurons against cell death. In the present report, long-term protection of these neurons was evaluated by continuously expressing the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) within the facial nucleus using a lentiviral vector system. The viral vector was injected unilaterally into the facial nucleus of 4-month-old Balb/C mice. In contrast to axotomy in other adult rodents, facial nerve lesion in these animals leads to a progressive and sustained loss and/or atrophy of >50% of the motoneurons. This model thus represents an attractive model to evaluate potential protective effects of neurotrophic factors for adult-onset motoneuron diseases, such as amyotrophic lateral sclerosis. One month after unilateral lentiviral vector injection, the facial nerve was sectioned, and the animals were killed 3 months later. Viral delivery of the GDNF gene led to long-term expression and extensive diffusion of GDNF within the brainstem. In addition, axotomized motoneurons were completely protected against cell death, because 95% of the motoneurons were present as demonstrated by both Nissl staining and choline acetyltransferase immunoreactivity. Furthermore, GDNF prevented lesion-induced neuronal atrophy and maintained proximal motoneuron axons, despite the absence of target cell reinnervation. This is the first evidence that viral-mediated delivery of GDNF close to the motoneuron cell bodies of the facial nucleus of adult mice can lead to complete and long-term protection against lesion-induced cell death

    Microencapsulated Bovine Chromaffin Cells In Vitro: Effect of Density and Coseeding with a NGF-Releasing Cell Line

    Get PDF
    Immobilization of discrete cell clusters within a partially crosslinked matrix prevents reaggregation of primary tissues and may provide a means for long-term maintenance of encapsulated cells. Dissociated bovine adrenal chromaffin (BAC) cells were suspended throughout crosslinked polyanionic microspheres previously shown to be selectively permeable. Microcapsules approximately 500 µm in diameter were seeded with: 1) three different densities of BAC cells; and 2) BAC cells suspended in Matrigel® or coseeded with a genetically modified nerve growth factor (NGF)- releasing fibroblast cell line. Each group was analyzed in vitro at 1, 4 and 8 weeks for spontaneous and potassium-evoked release of catecholamines, and maintained in vitro for up to 12 weeks for morphological observations. Over time, release of norepinephrine (NE) and epinephrine (EPI) diminished, while dopamine (DA) remained constant from the monoseeded capsules. In the coseeded group, an increase in potassium-evoked release of DA was observed from 1 to 4 weeks, and remained at that level up to 8 weeks. Encapsulated chromaffin cells retained a rounded morphology typical of undifferentiated cells. Intact chromaffin cells with well preserved and abundant secretory granules were observed ultrastructurally after 4 weeks in vitro. Small neurites from the chromaffin cells in the coseeded group were observed at 4 weeks with light microscopy, and up to 12 weeks with electron microscopy. Under static incubation conditions, 1 mM D-amphetamine resulted in a significant increase in the output of NE and DA from the coseeded capsules 8 weeks postimplantation, as compared to microcapsules loaded with chromaffin cells alone. Encapsulation within an immobilization matrix allows manipulation of the internal environment, thereby providing the ability to pre-treat cells with various factors in a non-invasive manner, which may enhance long-term cellular viability

    GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine

    Get PDF
    Parkinson's disease (PD) is characterized by the progressive loss of the substantia nigra (SN) dopaminergic neurons projecting to the striatum. Neurotrophic factors may have the potential to prevent or slow down the degenerative process occurring in PD. To that end, we examined whether low amounts of glial cell line-derived neurotrophic factor (GDNF) continuously released from polymer-encapsulated genetically engineered cells are able to prevent the loss of tyrosine hydroxylase immunoreactivity (TH-IR) in SN neurons and ameliorate the amphetamine-induced rotational asymmetry in rats that have been subjected to a unilateral medial forebrain bundle (MFB) axotomy. Baby hamster kidney (BHK) cells transfected with the cDNA for GDNF were encapsulated in a polymer fiber and implanted unilaterally at a location lateral to the MFB and rostral to the SN. ELISA assays before implantation show that the capsules release approximately 5 ng of GDNF/capsule per day. One week later, the MFB was axotomized unilaterally ipsilateral to the capsule placement. Seven days later, the animals were tested for amphetamine-induced rotational asymmetry and killed. The striatum was excised and analyzed either for catecholamine content or TH-IR, while the SN was immunostained for the presence of TH-IR. GDNF did not prevent the loss of dopamine in the striatum. However, GDNF significantly rescued TH-IR neurons in the SN pars compacta. Furthermore, GDNF also significantly reduced the number of turns per minute ipsilateral to the lesion under the influence of amphetamine. Improvement of rotational behavior in the absence of dopaminergic striatal reinnervation may reflect neuronal plasticity in the SN, as suggested by the dendritic sprouting observed in animals receiving GDNF. These results illustrate that the continuous release of low levels of GDNF close to the SN is capable of protecting the nigral dopaminergic neurons from an axotomy-induced lesion and significantly improving pharmacological rotational behavior by a mechanism other than dopaminergic striatal reinnervation

    Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length.

    Get PDF
    A new strategy based on lentiviral-mediated delivery of mutant huntingtin (htt) was used to create a genetic model of Huntington's disease (HD) in rats and to assess the relative contribution of polyglutamine (CAG) repeat size, htt expression levels, and protein length on the onset and specificity of the pathology. Lentiviral vectors coding for the first 171, 853, and 1520 amino acids of wild-type (19 CAG) or mutant htt (44, 66, and 82 CAG) driven by either the phosphoglycerate kinase 1 (PGK) or the cytomegalovirus (CMV) promoters were injected in rat striatum. A progressive pathology characterized by sequential appearance of ubiquitinated htt aggregates, loss of dopamine- and cAMP-regulated phosphoprotein of 32 kDa staining, and cell death was observed over 6 months with mutant htt. Earlier onset and more severe pathology occurred with shorter fragments, longer CAG repeats, and higher expression levels. Interestingly, the aggregates were predominantly located in the nucleus of PGK-htt171-injected rats, whereas they were present in both the nucleus and processes of CMV-htt171-injected animals expressing lower transgene levels. Finally, a selective sparing of interneurons was observed in animals injected with vectors expressing mutant htt. These data demonstrate that lentiviral-mediated expression of mutant htt provides a robust in vivo genetic model for selective neural degeneration that will facilitate future studies on the pathogenesis of cell death and experimental therapeutics for HD

    Anderson Localization and Polarization

    Full text link
    Effects of randomness have supplied fundamental problems in condensed matter physics and localization due to interference of quantum mechanical electrons are well studied as the Anderson localization. Although we have well established understanding of the localization of non-interacting electrons, information of the correlated electrons with randomness is still missing. It was mainly due to lack of reliable numerical techniques for the correlated electrons. For the one dimensional correlated systems without randomness, lots of numerical results are collected by the Density Matrix Renormalization Group (DMRG) method and consistent understanding with analytical predictions has been achieved. In this paper, we plan to apply DMRG for the random electron systems by calculating direct responses of the system with electric field. At first, random systems without interaction are carefully investigated. Then we try to treat both of interaction and randomness in one dimensional systems
    corecore