150,318 research outputs found
Are topological defects responsible for the 300 EeV cosmic rays?
We use of a hybrid matrix--Monte Carlo method to simulate the cascade through
the cosmic background radiation initiated by UHE particles and radiation
emitted by topological defects. We follow the cascade over cosmological
distances and calculate the intensities of hadrons, gamma-rays and neutrinos
produced. We compare our results with the observed cosmic ray intensity at 300
EeV and lower energies, and conclude that topological defects are most unlikely
to be the origin of the most energetic cosmic ray events.Comment: 3 pages, compressed and uuencoded PostScript (111kb); Nucl. Phys. B.,
Proc. Suppl., vol 48, in press (TAUP95 Workshop
Medical operations and life sciences activities on space station
Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity
Optical and X-ray Variability in The Least Luminous AGN, NGC4395
We report the detection of optical and X-ray variability in the least
luminous known Seyfert galaxy, NGC4395. The featureless continuum changed by a
factor of 2 in 6 months, which is typical of more luminous AGN. The largest
variation was seen at shorter wavelengths, so that the spectrum becomes
`harder' during higher activity states. In a one week optical broad band
monitoring program, a 20% change was seen between successive nights. In a 1
month period the spectral shape changed from a power law with spectral index
alpha ~0 (characteristic of quasars) to a spectral index alpha ~2 (as observed
in other dwarf AGN). ROSAT HRI and PSPC archive data show a variable X-ray
source coincident with the galactic nucleus. A change in X-ray flux by a factor
\~2 in 15 days has been observed. When compared with more luminous AGN, NGC4395
appears to be very X-ray quiet. The hardness ratio obtained from the PSPC data
suggests that the spectrum could be absorbed. We also report the discovery of
weak CaIIK absorption, suggesting the presence of a young stellar cluster
providing of the order of 10% of the blue light. Using HST UV archive data,
together with the optical and X-ray observations, we examine the spectral
energy distribution for NGC4395 and discuss the physical conditions implied by
the nuclear activity under the standard AGN model. The observations can be
explained by either an accreting massive black hole emitting at about 10^(-3)
L_(Edd) or by a single old compact SNR with an age of 50 to 500 yr generated by
a small nuclear starburst.Comment: 19 pages, 9 figures, to appear in MNRA
Three dimensional turbulent boundary layers: Data sets for two-space coordinate flows
Sets of data (flows) from eight original sources on three-dimensional turbulent boundary layers were reevaluated and tabulated in a common format. The flows studied were all of the type describable in only two space coordinates, e.g., flow over a swept wing of infinite span. The principal data in each set are profiles of the main and crossflow components of mean velocity. Turbulent shear stress vector profiles were available for two flows, Bradshaw and Terrell (1969) and Johnson (1970). Free stream pressure gradient, wall shear stress coefficient and angle, integral thickness and left and right hand sides of the momentum integral equations were evaluated in a consistent manner for each flow
Dark Matter Searches with Astroparticle Data
The existence of dark matter (DM) was first noticed by Zwicky in the 1930s,
but its nature remains one of the great unsolved problems of physics. A variety
of observations indicate that it is non-baryonic and non-relativistic. One of
the preferred candidates for non-baryonic DM is a weakly interacting massive
particle (WIMP) that in most models is stable. WIMP self-annihilation can
produce cosmic rays, gamma rays, and other particles with signatures that may
be detectable. Hints of anomalous cosmic-ray spectra found by recent
experiments, such as PAMELA, have motivated interesting interpretations in
terms of DM annihilation and/or decay. However, these signatures also have
standard astrophysical interpretations, so additional evidence is needed in
order to make a case for detection of DM annihilation or decay. Searches by the
Fermi Large Area Telescope for gamma-ray signals from clumps, nearby dwarf
spheroidal galaxies, and galaxy clusters have also been performed, along with
measurements of the diffuse Galactic and extragalactic gamma-ray emission. In
addition, imaging atmospheric Cherenkov telescopes like HESS, MAGIC, and
VERITAS have reported on searches for gamma-ray emission from dwarf galaxies.
In this review, we examine the status of searches for particle DM by these
instruments and discuss the interpretations and resulting DM limits.Comment: Solicited review article to appear in Annual Reviews of Astronomy and
Astrophysics. 52 pages, 10 figures (higher resolution figures will appear in
the journal article
Two-photon E1M1 decay of 2 3P0 states in heavy heliumlike ions
Two-photon E1M1 transition rates are evaluated for heliumlike ions with
nuclear charges in the range Z = 50-94. The two-photon rates modify previously
published lifetimes/transition rates of 2 3P0 states. For isotopes with nuclear
spin I not equal 0, where hyperfine quenching dominates the 2 3P0 decay,
two-photon contributions are significant; for example, in heliumlike 187 Os the
two-photon correction is 3% of the total rate. For isotopes with I= 0, where
the 2 3P0 decay is unquenched, the E1M1 corrections are even more important
reaching 60% for Z=94. Therefore, to aid in the interpretation of experiments
on hyperfine quenching in heliumlike ions and to provide a more complete
database for unquenched transitions, a knowledge of E1M1 rates is important.Comment: 6 pages, 3 figures, 3 table
- …