The existence of dark matter (DM) was first noticed by Zwicky in the 1930s,
but its nature remains one of the great unsolved problems of physics. A variety
of observations indicate that it is non-baryonic and non-relativistic. One of
the preferred candidates for non-baryonic DM is a weakly interacting massive
particle (WIMP) that in most models is stable. WIMP self-annihilation can
produce cosmic rays, gamma rays, and other particles with signatures that may
be detectable. Hints of anomalous cosmic-ray spectra found by recent
experiments, such as PAMELA, have motivated interesting interpretations in
terms of DM annihilation and/or decay. However, these signatures also have
standard astrophysical interpretations, so additional evidence is needed in
order to make a case for detection of DM annihilation or decay. Searches by the
Fermi Large Area Telescope for gamma-ray signals from clumps, nearby dwarf
spheroidal galaxies, and galaxy clusters have also been performed, along with
measurements of the diffuse Galactic and extragalactic gamma-ray emission. In
addition, imaging atmospheric Cherenkov telescopes like HESS, MAGIC, and
VERITAS have reported on searches for gamma-ray emission from dwarf galaxies.
In this review, we examine the status of searches for particle DM by these
instruments and discuss the interpretations and resulting DM limits.Comment: Solicited review article to appear in Annual Reviews of Astronomy and
Astrophysics. 52 pages, 10 figures (higher resolution figures will appear in
the journal article