141 research outputs found

    Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina

    Get PDF
    To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes

    Acute Hypoglycemia Induces Retinal Cell Death in Mouse

    Get PDF
    BACKGROUND: Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. METHODOLOGY/PRINCIPAL FINDINGS: To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. CONCLUSIONS/SIGNIFICANCE: We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content

    Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP infl uences secretion of intestinal glands, blood fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This fi nding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in infl ammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinfl ammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from infl ammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in infl ammatory events of the intestine

    Effect of cholesterol on the dipole potential of lipid membranes

    Get PDF
    The membrane dipole potential, ψd, is an electrical potential difference with a value typically in the range 150 – 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci

    Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine

    Get PDF
    Grapevine is an extremely important crop worldwide. In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress (WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors

    A simplified microwave-based motion detector for home cage activity monitoring in mice

    Get PDF
    Background: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. Results: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. Conclusion: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice

    Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis

    Get PDF
    Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity
    corecore