2,091 research outputs found

    Working memory and attention in choice.

    Get PDF
    We study the role of attention and working memory in choices where options are presented sequentially rather than simultaneously. We build a model where a costly attention effort is chosen, which can vary over time. Evidence is accumulated proportionally to this effort and the utility of the reward. Crucially, the evidence accumulated decays over time. Optimal attention allocation maximizes expected utility from final choice; the optimal solution takes the decay into account, so attention is preferentially devoted to later times; but convexity of the flow attention cost prevents it from being concentrated near the end. We test this model with a choice experiment where participants observe sequentially two options. In our data the option presented first is, everything else being equal, significantly less likely to be chosen. This recency effect has a natural explanation with appropriate parameter values in our model of leaky evidence accumulation, where the decline is stronger for the option observed first. Analysis of choice, response time and brain imaging data provide support for the model. Working memory plays an essential role. The recency bias is stronger for participants with weaker performance in working memory tasks. Also activity in parietal areas, coding the stored value in working, declines over time as predicted

    A study of high-altitude manned research aircraft employing strut-braced wings of high-aspect-ratio

    Get PDF
    The effect of increased wing aspect ratio of subsonic aircraft on configurations with and without strut bracing. Results indicate that an optimum cantilever configuration, with a wing aspect ratio of approximately 26, has a 19% improvement in cruise range when compared to a baseline concept with a wing aspect ratio of approximately 10. An optimum strut braced configuration, with a wing aspect ratio of approximately 28, has a 31% improvment in cruise range when compared to the same baseline concept. This improvement is mainly due to the estimated reduction in wing weight resulting from use of lifting struts. All configurations assume the same mission payload and fuel. The drag characteristics of the wings are enhanced with the use of laminar flow airfoils. A method for determining the extent of attainable natural laminar flow, and methods for preliminary structural design and for aerodynamic analysis of wings lifting struts are presented

    Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    Get PDF
    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions

    Search for unbound 15Be states in the 3n+12Be channel

    Get PDF
    15Be is expected to have low-lying 3/2+ and 5/2+ states. A first search did not observe the 3/2+ [A. Spyrou et al., Phys. Rev. C 84, 044309 (2011)], however, a resonance in 15Be was populated in a second attempt and determined to be unbound with respect to 14Be by 1.8(1) MeV with a tentative spin-parity assignment of 5/2+ [J. Snyder et al., Phys. Rev. C 88, 031303(R) (2013)]. Search for the predicted 15Be 3/2+ state in the three-neutron decay channel. A two-proton removal reaction from a 55 MeV/u 17C beam was used to populate neutron-unbound states in 15Be. The two-, three-, and four-body decay energies of the 12Be + neutron(s) detected in coincidence were reconstructed using invariant mass spectroscopy. Monte Carlo simulations were performed to extract the resonance and decay properties from the observed spectra. The low-energy regions of the decay energy spectra can be described with the first excited unbound state of 14Be (E_x=1.54 MeV, E_r=0.28 MeV). Including a state in 15Be that decays through the first excited 14Be state slightly improves the fit at higher energies though the cross section is small. A 15Be component is not needed to describe the data. If the 3/2+ state in 15Be is populated, the decay by three-neutron emission through 14Be is weak, less than or equal to 11% up to 4 MeV. In the best fit, 15Be is unbound with respect to 12Be by 1.4 MeV (unbound with respect to $14Be by 2.66 MeV) with a strength of 7%.Comment: 6 pages, 5 figures, accepted in Physical Review

    Three-body correlations in the ground-state decay of 26O

    Full text link
    Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{\sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target

    Development of a new laser Doppler velocimeter for the Ames High Reynolds Channel No. 2

    Get PDF
    A new two-channel laser Doppler velocimeter developed for the Ames High Reynolds Channel No. 2 is described. Design features required for the satisfactory operation of the optical system in the channel environment are discussed. Fiber optics are used to transmit the megahertz Doppler signal to the photodetectors located outside the channel pressure vessel, and provision is made to isolate the optical system from pressure and thermal strain effects. Computer-controlled scanning mirrors are used to position the laser beams in the channel flow. Techniques used to seed the flow with 0.5-micron-diam polystyrene spheres avoiding deposition on the test-section windows and porous boundary-layer removal panels are described. Preliminary results are presented with a discussion of several of the factors affecting accuracy

    Population of neutron unbound states via two-proton knockout reactions

    Full text link
    The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys. Changing Facets of Nuclear Structure, May 20-34, 200

    First Observation of 15Be

    Get PDF
    The neutron-unbound nucleus 15Be was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u 14Be beam. Neutrons were measured in coincidence with outgoing 14Be particles and the reconstructed decay energy spectrum exhibits a resonance at 1.8(1) MeV. This corresponds to 15Be being unbound by 0.45 MeV more then 16Be thus significantly hindering the sequential two-neutron decay of 16Be to 14Be through this state

    Energy distributions from three-body decaying many-body resonances

    Get PDF
    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0+0^{+} and 1+1^{+}-resonances in 12^{12}C populated in β\beta-decays. These states are dominated by sequential, through the 8^{8}Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ``dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wavefunctions are accurately computed.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letter
    corecore