5,160 research outputs found

    Influence of ROV umbilical on power quality when supplying electrical loads

    Get PDF
    The paper investigates the effects of a 3 km electrical umbilical cable on power transmission for an "island" supply onboard an all/more electric 'work-class' remote operated vehicle (ROV). It is shown how the chosen transmission voltage and frequency influence efficiency and the selection of power transmission components. A key feature of the paper is a discussion on the use of matrix converters for the propulsion thruster drive system; thereby allowing the input displacement factor to be varied to maintain maximum power transmission efficiency, independent of the thruster power factor. The natural impedance characteristics of the umbilical cable are also considered as means of reducing the input filter requirements for such converter

    Novel battery model of an all-electric personal rapid transit vehicle to determine state-of-health through subspace parameter estimation and a Kalman Estimator

    Get PDF
    Abstract--The paper describes a real-time adaptive battery model for use in an all-electric Personal Rapid Transit vehicle. Whilst traditionally, circuit-based models for lead-acid batteries centre on the well-known Randles’ model, here the Randles’ model is mapped to an equivalent circuit, demonstrating improved modelling capabilities and more accurate estimates of circuit parameters when used in Subspace parameter estimation techniques. Combined with Kalman Estimator algorithms, these techniques are demonstrated to correctly identify and converge on voltages associated with the battery State-of-Charge, overcoming problems such as SoC drift (incurred by coulomb-counting methods due to over-charging or ambient temperature fluctuations). Online monitoring of the degradation of these estimated parameters allows battery ageing (State-of-Health) to be assessed and, in safety-critical systems, cell failure may be predicted in time to avoid inconvenience to passenger networks. Due to the adaptive nature of the proposed methodology, this system can be implemented over a wide range of operating environments, applications and battery topologies

    Drive systems for operation on deep-sea ROVs

    Get PDF
    Power systems for thruster actuators and other auxiliaries employed on work-class deep-sea ROVs subject to 300bar ambient pressures, are considered. Emphasis on 3×3 matrix converters for thrusters and 3×2 matrix converters for system auxiliaries, is given, along with experimental results showing operation during pressure cycling consistent with typical operational duties

    Self-oscillating control methods for the LCC current-output resonant converter

    Get PDF
    Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators. The method is shown to have a similar effect as controlling the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes. However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants

    Design of an LCC current-output resonant converter for use as a constant current source

    Get PDF
    A methodology for the design of LCC resonant current-source converters, is presented. Unlike previous techniques, the resulting converter provides near constant steady-state output current over an extended load range when excited at the resonant frequency, through use of a self-oscillating controlle

    Normalized analysis and design of LCC resonant converters

    Get PDF
    Abstract—A normalization of the LCC voltage-output resonant converter performance characteristics, in terms of the tank gain at resonance and the parallel-to-series-capacitor ratio, is presented. The resulting description is subsequently used for the derivation of a design procedure that incorporates the effects of diode losses and the finite charge/discharge time of the parallel capacitor. Unlike previously reported techniques, the resulting normalized behavior of the converter is used to identify design regions to facilitate a reduction in component electrical stresses, and the use of harmonics to transfer real power. Consideration of the use of preferred component values is also given. The underlying methodology is ultimately suitable for incorporation into a software suite for use as part of a rapid interactive design tool. Both simulation results and experimental measurements from a prototype converter are included to demonstrate the attributes of the proposed analysis and design methodologies

    Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles

    Get PDF
    Abstract—This paper describes the application of state-estimation techniques for the real-time prediction of the state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Specifically, approaches based on the well-known Kalman Filter (KF) and Extended Kalman Filter (EKF), are presented, using a generic cell model, to provide correction for offset, drift, and long-term state divergence—an unfortunate feature of more traditional coulomb-counting techniques. The underlying dynamic behavior of each cell is modeled using two capacitors (bulk and surface) and three resistors (terminal, surface, and end), from which the SoC is determined from the voltage present on the bulk capacitor. Although the structure of the model has been previously reported for describing the characteristics of lithium-ion cells, here it is shown to also provide an alternative to commonly employed models of lead-acid cells when used in conjunction with a KF to estimate SoC and an EKF to predict state-of-health (SoH). Measurements using real-time road data are used to compare the performance of conventional integration-based methods for estimating SoC with those predicted from the presented state estimation schemes. Results show that the proposed methodologies are superior to more traditional techniques, with accuracy in determining the SoC within 2% being demonstrated. Moreover, by accounting for the nonlinearities present within the dynamic cell model, the application of an EKF is shown to provide verifiable indications of SoH of the cell pack

    A back to back multilevel converter for driving low inductance brushless AC machines

    Get PDF
    Traditionally, multilevel converters are utilised in medium voltage applications, allowing the DC-link voltage to exceed the switch maximum blocking voltage. Here, their application to control high- efficiency brushless permanent magnet synchronous machines exhibiting low phase inductance is explored, the relative advantages being shown to include reduced current ripple and improved harmonic spectrum. A cost benefit analysis is included along with experimental results from a prototype 5-level back-to-back converter

    State-of-charge and state-of-health prediction of lead-acid batteries for hybrid electric vehicles using non-linear observers

    Get PDF
    The paper describes the application of state-estimation techniques for the real-time prediction of state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Approaches based on the extended Kalman filter (EKF) are presented to provide correction for offset, drift and state divergence - an unfortunate feature of more traditional coulomb-counting techniques. Experimental results are employed to demonstrate the relative attributes of the proposed methodolog

    Sensorless control of deep-sea ROVs PMSMs excited by matrix converters

    Get PDF
    The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit
    corecore