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Self-Oscillating Control Methods for the LCC
Current-Output Resonant Converter

Adam J. Gilbert, Christopher M. Bingham, David A. Stone, and Martin P. Foster

Abstract—A strategy for self-oscillating control of LCC cur-
rent-output resonant converters, is presented, based on varying
the phase-angle between the fundamental of the input voltage and
current. Unlike other commonly employed control methodologies,
the proposed technique is shown to provide a convenient, linear
system input-output characteristic suitable for the design of regu-
lators. The method is shown to have a similar effect as controlling
the dc-link supply voltage, in terms of output-voltage/current
control. The LCC converter variant is used as an application
focus for demonstrating the presented techniques, with simulation
and experimental measurements from a prototype converter
being used to show the practical benefits. Third-order small and
large-signal models are developed, and employed in the formula-
tion of robust output-voltage and output-current control schemes.
However, notably, the presented techniques are ultimately generic
and readily applicable to other resonant converter variants.

Index Terms—Zero current switching (ZCS), zero voltage
switching (ZVS).

I. INTRODUCTION

I T is well established that resonant converter-based supplies
are advantageous in-terms of size and efficiency [1], [2]

compared to hard-switched counterparts. One of the main
impediments to their use, however, is the lack of simple but
robust control techniques. This is primarily due to the highly
non-linear dynamic characteristics that are normally associ-
ated with such systems. A novel control strategy (based on a
variant of linearized phase-control) is therefore proposed that
approximately linearizes the behavior of the converter such
that well-known control techniques can be readily applied.
Although other methods have been previously reported [3], [4]
that aim to linearize the converter’s behavior, the mechanism
presented here provides a convenient and cohesive framework
that is widely applicable. To focus the development of the
underlying principles, an LCC current-output converter variant,
shown in Fig. 1, is used as an example.

The proposed techniques therefore constitute an advance-
ment to commonly used phase-control methods, and maintains
all the associated advantages over traditional frequency control
methods. In [5], it is shown that self-oscillating phase-control
provides self-tuning relative to the resonant tank frequency
(advantageous in that the same phase-controller can be directly
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applied to a wide range of converter designs), reduced controller
sensitivity near resonance, and the ability to ensure switching at
all times is either above resonance [for zero voltage switching
(ZVS)] or below resonance [for zero current switching (ZCS)]
depending on application requirements. To obtain the overall
system dynamics when using the presented control method-
ology, similar analysis techniques are employed to those used
in [6] for the frequency control of resonant-converters.

II. EQUIVALENCE OF POWER-FACTOR

AND SUPPLY VOLTAGE CONTROL

During normal operation, the resonant tank is excited above
the resonant frequency by an applied square-wave voltage,

, that results in an approximately sinusoidal series inductor
current, , see Fig. 2(a). The fundamental component of the
square-wave is also shown in Fig. 2(a), and can be sub-divided
into two components, one in phase with the resonant current,

, and one in quadrature, Fig. 2(b).
The following identity can be used to derive the magnitude of

the switching voltage component that is in-phase with the series
inductor current:

(1)

The switching voltage can be approximated by its funda-
mental component as follows:

(2)

with the series inductor current assumed to be a sinusoid

(3)

where “ ” denates the peak value, and is used generically
throughout the following analysis.

Using (1) the fundamental component of the excitation
voltage can be expressed as

(4)

To maintain the real power flow into the converter, assuming a
square-wave switching voltage in-phase with the series inductor
current, the “equivalent” square-wave voltage is approximated
to

(5)
where the electrical power-factor PF

0885-8993/$25.00 © 2008 IEEE
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Fig. 1. LCC current-output resonant converter.

Fig. 2. (a) Excitation voltage and resonant tank current and (b) phase compo-
nents of switching voltage wrt. resonant tank current.

It can now be seen that varying the instantaneous power-
factor is equivalent to varying the instantaneous
supply-voltage, from a fundamental mode approximation
(FMA) perspective. When deriving a small-signal model, this
allows the converter to be considered as being excited at the
resonant frequency while varying the power factor—in this
case, power-factor can be included in the model as an effective
supply-voltage scaling factor, and therefore does not alter the
structure of the model.

III. PHASOR-TRANSFORM MODEL

To enable a small-signal model of the self-oscillating
power-factor controlled converter to be derived, a large-signal
phasor-transformed model is initially considered when operating
the converter about the resonant frequency. In a similar manner
to the use of the – axis transformation when modelling and
analysing three-phasemachines, a “phasor-transform” technique
can be used for single-phase systems based on the assumption
that the signals are sinusoidal in nature but vary in amplitude,
frequencyandphase [7]–[10].These featuresarecharacteristicof
resonant converters operating near resonance with sufficiently
high quality factor, as is commonly encountered.

The formulation is based upon the principle that a generic
form of sine waveform (voltages or currents in this case) can
be approximated by a sinusoid whose frequency and amplitude
vary with time [8], [9]

(6)

where is the complex envelope of and is the
switching frequency. Considering the differential equation
governing the behavior of an ideal inductor

(7)

and substituting (6) into (7) for both current and voltage gives
the generic expression

(8)

Simplifying gives

(9)

In a similar manner, capacitors and resistors are described by

(10a)

(10b)

More generally, therefore, a signal envelope can be ex-
panded into its constituent real and imaginary components, de-
noted by “ ” and “ ” subscripts, respectively

(11)
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Fig. 3. FMA model of LCC resonant tank.

For the inductor, substituting (11) into (9) and separating the
real and imaginary terms gives

(12a)

(12b)

and similarly for the capacitor and resistor

(13a)

(13b)

(14a)

(14b)

The rectifier in Fig. 1 is not readily modelled using the phasor-
transform technique, and requires the resonant tank and output
filter to be considered separately, and then combined. This is
justified since the output filter bandwidth is much lower than that
of the tank resonant frequency, and, as a result of the rectifier
action, the filter effectively reacts only to the envelope of the
resonant tank waveforms. From basic FMA, the resonant tank
is therefore modelled as in Fig. 3 [2].

For use in network simulators (such as SPICE or SABER),
the complex components can be eliminated through use of two
coupled equivalent circuits, describing separately, the real and
imaginary characteristics [10]. After phasor-transforming the
components in Fig. 3, the coupled networks shown in Fig. 4 are
obtained.

A state space representation of Fig. 4 is obtained for both
the real and imaginary circuits, which are then combined to
give (15)

(15)

Fig. 4. Phasor transformed LCC resonant tank model: (a) real circuit and (b)
imaginary circuit.

Fig. 5. Modelling output filter by a time varying load.

and the waveform envelopes are extracted using the output
equation

(16)

Finally, the output filter is described in state-variable form by

(17)

The voltages of the phasor-transformed tank model and
output filter are coupled by noting that the average voltage
presented to the output filter, via the rectifier, is given by (18),
since is assumed sinusoidal

(18)

Coupling of the currents is achieved by replacing the current
source in Fig. 3 by a time varying resistor, Fig. 5, with the imag-
inary and real components of given by

(19)
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Since the transformer primary current is a squarewave, and
the fundamental is used in the phasor-transformed model, the
peak of the squarewave current is scaled by 4 :

(20)

The time-varying load resistance is now calculated from

(21)

From (19), (20) and (21) the transformer primary phasor cur-
rents are found algebraically

(22)

The complete model is therefore described by (15)–(18) and
(22).

IV. SMALL-SIGNAL ANALYSIS

A small-signal model of the converter, while under self-oscil-
lating power-factor control, can be obtained by modifying (15)
(the large signal phasor-transform model) such that power factor
becomes an input. In Section II it has been shown that varying
the power-factor is equivalent in terms of real power flow to lin-
early scaling the supply voltage while switching the converter
at resonance, hence

(23)

[Note: When varying the power factor, the switching fre-
quency naturally varies, and from an analysis perspective,
either the supply voltage can be considered constant and the
frequency varied, or, as in the case presented here, the supply
voltage varied while the switching frequency remains constant]

The equations underpinning the phasor-transformed model
(15)–(18), (22) are linearized about the resonant frequency, and
(18) is re-expressed as follows:

(24)

For a generic variable , the steady-state and small-signal
components are separated as follows:

(25)

where and are the steady-state and small-signal compo-
nents, respectively—and (24) is re-written as

(26)

Linearizing about a steady-state operating point gives

(27)
The transformer primary currents (22) are also modified ac-

cordingly

(28)

and linearizing (28) about the steady-state operating point gives

(29a)

(29b)

To develop the small-signal model, expressions for the
steady-state components , and need to be
derived. Using (24), the steady-state output inductor current is
simply written

(30)

with the transformer primary current components, from (22) and
(30), becoming

(31)
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Steady-state conditions are obtained by equating the time
derivatives in (23) to zero. Equation (31) is used to replace the

components, thereby giving

(32a)

(32b)

(32c)

(32d)

(32e)

(32f)

As previously shown, the power factor, in steady-state, does
not alter the small-signal analysis. Consequently, it can be as-
sumed that 1 (i.e., operation at resonance) to simplify
the analysis. At resonance, therefore, 0, since all the
series-inductor current is real. From (32e) this also implies that

0. Substituting 0 and 0 into (32a)
allows for the calculation of

(33)

From the account given in [11], design equations for the LCC
current-output resonant converter, based on FMA, can be uti-
lized to simplify the analysis. Specifically, in [11], it is shown
that, at resonance, the output voltage of the converter is given
by:

(34)

where is the voltage gain of the resonant tank and is
transformer turns ratio (when expressed as ), and the
steady-state output-filter current is given by

(35)

Equating (30) and (35), eliminating via use of (33), and
solving for then gives

(36)

Note that two solutions exist for (36), having opposing
polarities. The solution presented in (36) is selected
such that the phase of w.r.t , is negative, i.e.,

0. In [11] it is also shown that,
from a given converter specification, the resonant tank compo-
nents can be chosen as follows:

(37a)

(37b)

(37c)

where , and is the resonant frequency.
These equations will be used to simplify the remaining anal-

ysis. Substituting (33) and (36), into (32c), and eliminating
in (32c) via (37a) gives

(38)

Eliminating in (32b) via (37b), substituting in (38) and
solving for then gives

(39)

Since the steady-state conditions are all now known (at PF
1) the small-signal equations expressed in (27), (29) can be

determined

(40)

(41a)

(41b)

The resulting state-space small-signal model can now be
written from (17), (23), (40) and (41) giving (42), shown at the
bottom of the next page.

To use the model, (42), the converter tank gain and resonant
frequency must be determined. These are obtained by solving
(37) for , and . For instance, to calculate , equate
the term in both (37a) and (37c), and solve for , where

.

V. REALIZATION OF SELF-OSCILLATING CONTROLLER

A key factor to provide good self-oscillating control of the
power factor is determining when changes of polarity of the se-
ries-inductor current occur—for simplicity, the series-inductor
voltage is measured, integrated (through use of low-pass filter
with relatively low break frequency), and fed into low-offset
comparator with an appropriate reference. The time-constant of
the low-pass filter is chosen such that at the lowest switching
frequency, the phase shift, , is approximately and that
the filter gain is sufficiently small such that the voltage ap-
plied across the comparator is within specification at all times

(43)



1978 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY 2008

Fig. 6. FPGA delay methodology.

Having obtained the current polarity, an FPGA is used to
generate the required switching signals based on the demanded
power-factor. Fig. 6 shows the required functionality of the
FPGA delay mechanism. A background process on the FPGA
measures the period of the current waveform. At time
a rising edge on sgn is detected, and, after a delay time

, at , the FPGA forces a falling-edge on the switching
voltage.

Using the methodology outlined above, the FPGA ensures
the phase-shift is as desired on a cycle-by-cycle basis. The re-
sulting large-signal model approximation relating power-factor
to output-voltage is described in (42).

Delaying the “edges” in the proposed manner reduces the de-
lays necessary by the FPGA and, secondly, ensures that the duty
cycle of the current-waveform is maintained.

Fig. 7. FPGA based power-factor controller: (a) block diagram and (b) proto-
type controller.

The required delay-time is calculated from the power-
factor and the period as follows:

(44)

To ensure self-oscillation start-up, when no series-inductor
current sign change is detected within 100 s, the FPGA
switches the converter at a fixed 500 kHz. For the prototype
presented in Section VI, this start-up strategy results in the

(42)
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Fig. 8. Steady-state output voltage across various loads when using (a) phase-angle control and (b) power-factor control.

converter being switched at 500 kHz for approximately 10 s
before the series-inductor current is sufficient to start self-os-
cillation. The technique additionally results in reduced inrush
currents.

An overview of the power factor controller, and photo of the
FPGA with interface board, is provided in Fig. 7.

The delay-reduce feature provides compensation for any
propagation delay in current sensing, processing, and gate
driving. It should be noted that from a commercial perspective,
a fully embedded closed-loop output-regulation control strategy
suitable for low-cost and robust resonant-converter control,
would be implemented on a low cost ASIC.

VI. STEADY-STATE BEHAVIOR OF THE

POWER-FACTOR CONTROLLER

For a 1-A current-source when switched at the resonant fre-
quency [12] with converter parameters specified by: 18,

13.6 H, 220 nF, 130 nF, 1,
24 H, 220 F, Fig. 8 provides a comparison between
experimental measurements of steady-state output voltage for
both the proposed self-oscillating power-factor control method-
ology and the more traditional self-oscillating phase-angle con-
trol methodology, as the load is varied from 10 to 20 in 2
increments.

From Fig. 8 it can clearly be seen that, at steady-state, the
power-factor control methodology provides an almost linear
control to output relationship, compared to the more traditional
phase-angle controller characteristic.

VII. EXPERIMENTAL VERIFICATION OF THE SMALL

SIGNAL ANALYSIS METHODOLOGY

Fig. 9 shows experimental measurements of the small-signal
frequency response of the converter along with those from the
proposed analysis (42). The power factor is perturbed around

0.75 ( 157 kHz, 161 kHz with 10 ,
20 , respectively) through use of the self-oscillating

power-factor controller considered previously. In order to ap-
propriately consider the results a note about scaling is in order.

When 10 , the converter gain at resonance is 0.674,
hence, with the specified input voltage, 12.1 V, implying
a steady-state gain of 21.7 dB at 0 Hz between PF and .
Similarly when , the converter gain at resonance is
1.26, hence, with the specified input voltage, 22.7 V,
giving a steady-state gain of 27.1 dB at 0 Hz between PF
and . It can be seen that, in general, very good agreement
between the results is seen to exist. Moreover, from Fig. 10 it
can be seen that both the simulated and experimental output
voltage dynamics closely follow a scaled version of the input
power factor, thereby further demonstrating the controller’s
linear behavior, and, although the underlying state-variable
model is eighth-order, the system is dominantly third-order.
Furthermore, since the small-signal response is found to be
constant across the full steady-state power-factor range, the
small-signal response can also be considered to provide a good
approximation of the large-signal behavior.

The model is shown to be experimentally validated up to
2 kHz, which is more than sufficient for the robust design of

an outer output-voltage/current regulation controller. Typically,
the output-regulation control bandwidth for resonant converters
is designed to be smaller than that of the converter output-filter
(3.4 kHz in the prototype converter), which, by necessity, has a
much lower bandwidth than the switching frequency. Neverthe-
less, for completeness, results from detailed time-domain non-
linear circuit simulations are also included at higher frequencies
to further show the validity of the model.

VIII. SUPPLY-VOLTAGE DISTURBANCE REJECTION

To demonstrate the supply voltage disturbance rejection prop-
erties, the converter (detailed in Section VII) is initially excited
such that the power factor is controlled to be PF 0.8. Then, in-
termittently, the product PF is controlled to be maintained at

PF 14.2 through use of feed-forward action. With a con-
stant dc supply voltage of 18 V both strategies provide
9 V output when applied across a 10 load. Fig. 11 shows
the ability of the latter method to provide improved regulation
characteristics when 18 2 2 100 -the choice of
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Fig. 9. Small-signal frequency response comparison between proposed analysis and experimental results for 10 
 load (a–b) and 20 
 load (c–d).

Fig. 10. Comparison between experimental and small-signal model response
for R = 10 
 during a perturbed step change in power factor from PF =
0.8 to 0.3. Note that a third-order numerically reduced model is utilized for
the small-signal response. The power factor is scaled by 12.1 V since when
the power-factor is unity the theoretical ideal output-voltage of the converter is
12.1 V.

100 Hz disturbance reflects the use of a full-bridge mains recti-
fier at the input to the converter, since the effects of higher fre-
quency perturbations are attenuated due to the presence of the
output filter and tank. In particular, it can be seen that during
constant power-factor operation, the peak-peak output voltage
ripple (1.66 V) is much larger than that obtained when utilizing
feed-forward control action (0.26 V), thereby demonstrating the
potential for improving regulation performance (see Fig. 12).

IX. CLOSED-LOOP OUTPUT VOLTAGE REGULATION

When power factor control is combined with the described
feed-forward action (giving the equivalence of input voltage
control) the approximate large-signal model (42) requires minor
modification. Specifically, the supply voltage in (42) is removed
from the matrix and included in the input , giving

(45)
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Fig. 11. Supply-voltage rejection with and without feed-forward action.

Fig. 12. Closed loop output voltage regulation with additional feed forward
control.

TABLE I
CONTROLLER GAINS AND ASSOCIATED 100-
 LOAD GAIN/PHASE MARGINS

For output voltage control, the overall system will take a form
similar to that shown in Fig. 12.

For stability, the loop-gain must never exceed unity magni-
tude when the phase shift crosses , for all possible load
conditions. The loop-gain is found from

(46)

where is the third-order reduced model of the converter
and is the controller model. The converter is to regulate
the output voltage across a load ranging from 10’s to 100 .
For robustness, the controller gains are selected such that the
converter remains stable with a phase margin , with an
applied load of 100 .

Implementing the control gains in Table I on the prototype
converter, and stepping the load between 10 and 20 , at
20 Hz, with an electronic load, while regulating the output-
voltage at 9 V gives the responses presented in Figs. 13 and 14,
for the two cases, respectively.

Fig. 13. Closed loop output-voltage regulation waveforms (a) K = 2K =

1 � 10 and (b) K = 2 K = 10 � 10 .

Fig. 14. Closed loop output-voltage regulation waveforms (a)K = 10K =

1� 10 and (b) K = 10 K = 10 � 10 .

It can be seen that the output-voltage regulation is being ob-
tained in each case in response to a relatively aggressive dis-
turbance stimuli. The converter can also be operated as a con-
stant current-source by feeding back a measurement of output
current instead of the output voltage. By way of example, for a
demand current of 0.75 A, the resulting closed loop responses
shown in Fig. 15 are obtained. Controller gains of 15
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Fig. 15. Closed loop output current control (a)K = 15K = 2.5� 10 and
(b) K = 1 K = 2.5 � 10 .

2.5 10 and 1 2.5 10 are used, respec-
tively, in Fig. 15(a) and (b). Again, it can be seen that regulation
is clearly evident in response to the aggressive stimuli. However,
notably, significant overshoot is present. This is a common fea-
ture of such systems and is a consequence of the power flow
to the output filter being unidirectional—the controller does not
have the capability to remove stored energy, and relies on the
load depleting the charge on the filter capacitor.

X. ALTERNATIVE SWITCHING TECHNIQUES

Two alternative switching techniques are shown in Fig. 16,
each having the advantage that a switching event occurs on
a zero-current crossing point, thereby facilitating reduced
switching losses. When employing the fixed falling-edge
method, shown in Fig. 16(a), the magnitude of the fundamental
of the voltage, normalized to that for a duty-cycle of 50% is

(47)

where is the phase-angle between the rising-edge of the
switching voltage and the rising zero-crossing of the sinusoidal
current. (i.e., when 0 and , the switching-waveform
is, respectively, square wave and dc). The fundamental of the
switching-voltage is, in general, out of phase with the sinu-
soidal current. The fraction of switching voltage fundamental
component that can be considered as being in-phase with the
current-waveform, is

(48)

Fig. 16. Alternative self-oscillating switching strategies—series inductor cur-
rent zero-crossing fixed: (a) falling-edge and (b) rising-edge.

Fig. 17. Comparison between control input and output-voltage for two dif-
ferent loads under power-factor control and the alternative fixed rising-edge
control.

[note that 2 is the phase shift between the fundamental of the
switching voltage and current waveform].
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Fig. 18. Output voltage as control signal is varied for both power-factor and
fixed edge control with an applied 10 
 load.

Fig. 19. Closed loop output voltage regulation: (a) 10
 load and (b) 50
 load.
The reference voltage is stepped between 8 V and 10 V at 100 Hz.

The overall switching-voltage component that is in-phase
with the sinusoidal current-waveform, normalized to the condi-
tion when the converter is switched with a 50% duty cycle, at
resonance, is

(49)

Fig. 20. Closed loop output voltage regulation (a) 10-
 load and (b) 50-
 load.
The reference voltage is stepped between 8 and 10 V at 100 Hz with a 1-kHz
0.5-V amplitude perturbation.

The time is therefore calculated as follows:

(50)

From Fig. 16 it can be seen that the current waveforms are
asymmetric about the positive and negative half-cycles, and are
therefore not sinusoidal, which was an underlying assumption
for the analysis. Simulation studies have shown that, generally,
(50) does not provide a sufficiently accurate linearization mech-
anism for the falling-edge switching strategy, similarly when an
equivalent methodology is applied to the rising-edge technique,
the resulting behavior is found to be alike.

The fixed rising-edge strategy is therefore tested without the
use of any linearization equation, thereby eliminating the need
for a lookup table within the FPGA, and the delay time is
given simply by

(51)

i.e when 1, the delay time is a half-period, giving a
square-wave switching voltage in phase with the current wave-
form. When 0, no switching occurs and the input voltage is
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Fig. 21. Simulated RMS series-inductor current and switching frequency for an applied load of: (a) 1 
, (b) 10 
, and (c) 50 
 across a range of output voltages
when utilizing power-factor (square-wave) and fixed-edge control.

clamped to 0 V. Fig. 16 provides a comparison of the converter
output voltage for various loads, as the control input is varied,
during power-factor and fixed rising-edge control.

From Fig. 17 it can be seen that the fixed-edge methodology
provides approximately linear behavior. The large-signal model
for power-factor self-oscillating control, approximated by the
small-signal model presented in Section IV, may therefore be

considered to provide a reasonable large-signal model for the
fixed rising-edge control scheme.

Fig. 18 compares the converter output-voltage and con-
trol-input for both power-factor control and fixed-edge control.
Both methods result in similar control signal to output-voltage
characteristics, and, for control purposes the power-factor
large-signal model may be sufficient.
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Fig. 22. Efficiency comparison between power-factor and fixed rising-edge (no
lookup table) control when output current is regulated at 1 A across a wide load
range.

Closing the loop with and 1 10 , and
comparing the converter output voltage for both methodologies
as the output-voltage reference is varied gives the transient re-
sponses shown in Fig. 19.

Comparing Fig. 19(a) with Fig. 19(b) it can be seen that the
output-voltage fall-time, for the case of the 50 load, is much
slower than that applied across the 10- load, demonstrating
the load dependent control dynamics discussed previously. Con-
versely, the output-voltage rise-time for the 50- load case is
much faster. This is a consequence of the controller demanding
a transiently higher voltage than the desired 10 V, with the con-
verter capable of developing approximately 50 V at resonance
with a 50- load in this case.

A similar effect can be seen in Fig. 20(a). The demand and
output-voltages are very similar when the demand is less than
9 V, and less so when higher voltages are demanded.

Of note, is the use of the ‘fixed rising-edge methodology’
provides the qualities of a much smaller RMS series-inductor
current, and a reduced switching bandwidth—both of which act
to improve efficiency. This is demonstrated in Fig. 21 where
the RMS series-inductor current and switching frequency, are
shown for both control methodologies [Note: the term “Square-
wave” in Figs. 21 and 22 is used to represent any control tech-
nique providing a square-wave excitation voltage to the
input of the resonant tank (as in the case of power-factor con-
trol, or the traditional variable frequency control)].

When regulating the output-current at 0.5 A, into a load
varying between 50 , the switching bandwidth
required for ‘square-wave’ excitation-voltage techniques is
170 kHz 190 kHz, a substantially greater range than the
156 kHz 160 kHz required when utilizing the “fixed-edge”
technique.

Fig. 22 compares the prototype’s (without synchronous rec-
tification) closed-loop converter efficiency as the output current
is regulated at 1 A over a range of applied loads, utilizing both
the power-factor (“square wave”) and fixed rising-edge control
methodologies. From the results it can be seen that utilization of

the “fixed edge” scheme provides a higher efficiency solution
as a consequence of switching events occurring at a zero-cur-
rent crossing, reduced RMS series-inductor current (as a result
of the reduced excitation waveform duty-cycle), and switching
close to resonance across the entire output-voltage range (since
the system is forced to commutate in phase with the resonant
current).

XI. CONCLUSION

A control strategy is provided for the LCC current-output
resonant converter that is ultimately, more widely applicable
to other resonant converter topologies. The methodology is
advantageous in that it initially linearizes the steady-state
input-to-output conversion ratio and, secondly, the large-signal
converter dynamics become predominantly third-order. At
present, no other reported control methodologies exhibit such
simple linear behavior. Through the well-defined behavior of
the power-factor controlled converter, the design of an addi-
tional controller to obtain closed-loop output-voltage/current
regulation is greatly simplified, allowing robust and/or well
documented adaptive control methods to be applied. This,
therefore, addresses one of the main drawbacks for the use of
resonant converters viz. the lack of literature on robust control
of such systems. A further switching scheme is also proposed
with reduced switching bandwidth, RMS series-inductor cur-
rent, and approximately similar large signal dynamics to that of
a power-factor controller converter.
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