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Abstract 
An improved control strategy for LCC current-output resonant converters is proposed. Small/large-
signal converter models and the steady-state dynamics of the converter are used for controlling power-
factor. The proposed method provides a convenient, linear control mechanism for the design of 
regulators, which has a similar influence to varying the DC-link supply voltage in terms of output-
voltage/current control, which, whilst being desirable, is normally not a realistic proposition for 
commercial supplies. 

Introduction 
It is well established that resonant converters are advantageous in-terms of size and efficiency [1,2]. 
Currently one of the main drawbacks for the use of resonant converters, however, is the lack of 
literature on robust control of such systems. Here, a novel control strategy is therefore considered, that 
approximately linearises the behaviour of the converter such that traditional control techniques can be 
applied. The technique is applied to the LCC current-output resonant converter as shown in Figure 
1(a). Although other control strategies [3,4] aim to linearise the converter behaviour, none linearise the 
behaviour as fully as presented here. Hardware implementation is via integration of VLs using a very 
low pass filter (RC network) to give precise zero-crossings of ILs, and a real-time FPGA based delay 
network that controls the MOSFET switching times such that based on the previous cycle, the phase 
angle between ILs and Vs is specified by the controllers desired cos(θ), figure 1(b). 
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(b) 

Fig. 1: (a)LCC Current-Output resonant converter (b) FPGA based Power-factor controller 

Equivalence of power-factor and supply voltage control  
During normal operation, the resonant tank is excited above the resonant frequency by an applied 
square-wave switching voltage, Vs, that results in an approximately sinusoidal series inductor current 
,ILs, see Fig. 2(a). The fundamental component of the square-wave is also shown in Fig.2, and can be 
sub-divided into two sinusoidal components, one in phase with the resonant current, ILs, and one in 
quadrature, Fig.2(b).  
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Fig. 2:  (a) Switching voltage and resonant tank current 

 (b) phase components of switching voltage wrt. resonant tank current. 
 
The following identity will be used to derive the magnitude of the switching voltage component in 
phase with the series inductor current. 

The switching voltage can be approximated by its fundamental component as follows: 

The series inductor current can be approximated by a sinusoid as follows: 

Using the identity in (1) the fundamental component is equated to a sinusoid in-phase with the series 
inductor current and another in quadrature: 

To maintain the real power flow into the converter, assuming a square-wave switching voltage in 
phase with the series inductor current, the ‘equivalent’ square-wave would take the form: 
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Varying the instantaneous power-factor (PF) is therefore equivalent to varying the instantaneous 
supply-voltage, from a fundamental mode approximation (FMA) perspective, i.e the current waveform 
is assumed sinusoidal. When deriving a small-signal model of the converter, this allows the converter 
to be considered as switching at the resonant frequency whilst varying the power factor—the power-
factor is included in the model as a supply-voltage scaling factor. Note that, from this perspective, the 
power-factor bias will not change the small-signal model.  
 
By way of example, Fig.3 compares the experimentally measured small-signal frequency response 
with that predicted by the proposed analysis. Experimentally the power factor is perturbed for the 
following converter: Vdc=18, Ls=13.6µH, Cs=220nF, Cp=130nF, N=1, Lf=24µH, Cf=220µF, around 
PFbias=0.75 through use of a self-oscillating power-factor controller.  
 
When RL=10Ω, the converter gain at resonance is 0.674 hence with the specified input voltage, 
Vout=12.1V. This implies a steady-state gain of +21.7dB at 0Hz between power-factor and output-
voltage.  
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Fig 3: Small-signal frequency response comparison between proposed analysis and experimental 
results for 10Ω load. Note that above a 2kHz perturbation in power factor, the phase response 
measurements become inaccurate as a result of the signal-level becoming comparable in amplitude 
with noise and output-voltage ripple. 
 
A high degree of correlation is present, thereby confirming that the proposed analysis is indeed valid. 
 
Phasor-transform converter model at the resonant frequency 

To enable a small-signal model of the power-factor controlled converter to be derived, a large-signal 
phasor-transformed model is first generated for the converter operating at the resonant frequency. 
 
Traditionally, the d-q-0 axis transformation is used for the modelling and analysis of 3-phase machines 
and power systems. However, there also exists a similar phasor-transform technique for single-phase 
systems based on the assumption that the signals are sinusoidal in nature but vary in amplitude, 
frequency and phase [5,6]. These features are characteristic of resonant converters operating near 
resonance with sufficiently high quality factor—as commonly encountered.  The presented analysis is 
based on the LCC current-output converter, Figure 1.   
 
A sinusoidal voltage or current can be approximated by a sinusoid whose frequency and amplitude 
vary with time [5]: 
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where )(tx is the complex envelope of )(tx  and sω is the switching frequency. Initially, consider the 
differential equation governing the behaviour of an ideal inductor: 

Substituting (6) into (7) for current and voltage gives: 

and simplifying gives [7]: 

In a similar manner, capacitors and resistors are described by: 

 
More generally, therefore, a signal envelope )(tx can be expanded into its constituent real and 
imaginary components, donated by ‘r’ and ‘i’ subscripts, respectively. 

For the inductor, substituting (11) into (9) and separating the real and imaginary components gives: 

and for the capacitor and resistor, 

 

For use in network simulators such as SPICE, for instance, the complex components can be eliminated 
through use of two coupled equivalent circuits, one describing the real domain and the other the 
imaginary domain [8]. 
 
The rectifier in Fig. 1 is not readily modelled using the phasor-transform, and requires the resonant 
tank and output filter to be modelled separately, and then combined. This is justified since the output 
filter bandwidth is much lower than that of the resonant tank, and, as a result of the rectifier action, the 
filter effectively reacts only to the envelope of the resonant tank waveforms. From basic Fundamental 
Mode Approximation (FMA), the resonant tank is modelled as in Fig.4—see [2].  
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Fig 4: FMA model of LCC Resonant tank 
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After phasor-transforming the components in Fig. 4, the coupled networks shown in Fig. 5 are 
obtained. 
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Fig. 5 : Phasor transformed LCC resonant tank model  (a) real circuit (b) imaginary circuit 
A state space representation of Fig. 5 is obtained for both the real and imaginary circuits, which are 
then combined to give:  

The waveform envelopes are extracted using the output equation: 

Finally, the output filter is described in state-variable form by: 

The voltages of the phasor-transformed tank model and output filter are coupled by noting that the 
average voltage presented to the output filter, via the rectifier, is given by (18) since VCp is assumed 
sinusoidal. 
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Coupling of the currents is achieved by replacing the current source in Fig. 4 by a time varying 
resistor, Fig. 6, with the imaginary and real components of Itp given by: 
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Fig. 6: Modelling output filter by a time varying load 

 
Since the transformer primary current is a squarewave, and the fundamental is used in the phasor-
transformed model, the peak of the squarewave current is scaled by 4/π.  

The time-varying load resistance is now calculated from:  

 
From (19),(20) and (21) the transformer primary phasor currents are found algebraically: 

The model is therefore described by (15) (16) (17) (18) (22) 
 
Small-signal analysis 
 
From the derived phasor-transformed model, a small-signal model can be generated.  
Equation (15) is modified as follows so that power factor becomes the input: 

The equations that describe the phasor-transformed model (16) (17) (18) (22) (23) are linearised about 
the resonant frequency. Equation (18) can be re-expressed as follows: 

filt

Cp
tp R

V
I r

r
=  (19a) 

filt

Cp
tp R

V
I i

i
=  (19b) 

πN
I

III Lf
tptptp ir

4ˆ 22 =+=  
(20) 

tp

Cp
filt I

V
R ˆ

ˆ
=  

(21) 

Cp

CpLf
tp V

V
N
I

I r

r ˆ
4

π
=  

(22a) 

Cp

CpLf
tp V

V
N
I

I i

i ˆ
4

π
=  (22b) 















































−

−
+



































































−

−

−−−

−−

=


























•

i

r

i

i

i

r

r

r

i

i

i

r

r

r

tp

tp

p

p

s

i

Cp

Cs

Ls

Cp

Cs

Ls

p
s

s
s

ss
s

s
p

s
s

s
ss

Cp

Cs

Ls

Cp

Cs

Ls

I
I
PF

C

C

L
V

V
V
I
V
V
I

C

C

LL

C

C

LL

V
V
I
V
V
I

100
000
000

010
000

00
2

00100

00100

11000

00001

00001

00110

π

ω

ω

ω

ω

ω

ω

 

(23) 

πN

VV
V ir CpCp

f

222 +
=  

(24) 



Assuming that variable X(t) can be split into its steady-state and small-signal component as follow: 

where oX and x∆ are the steady-state and small-signal component ,respectively, equation (24) can be 
written as: 

Now, linearising (26) about the steady-state components gives: 

At resonance, the series inductor current is always sufficient to source the load. Hence, (22) can be 
written as: 

Equation 28 can be similarly linearised about the steady-state components giving: 

To form the small-signal model, the steady-state components 
0rCpV , 

0iCpV and 
0LfI  must first be 

calculated. From (24), the steady-state output filter inductor current is found to be: 

The transformer primary current components from (22) and (30) are then given by: 

The steady-state conditions are obtained by equating the time derivatives in (23) to zero. Equation (31) 
is used to replace the Itp components, as follow: 
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As demonstrated earlier, the steady-state power factor does not affect the small-signal analysis hence 
we shall assume PF=1 (resonance), to simplify the analysis. At resonance 0

0
=

iLsI since all the series-

inductor current is real. From (32e) this also implies that 0
0

=
rCsV . Equation (32a) now allows the 

calculation of  
0rCpV  

To further simplify the analysis equations derived in [9] concerning the design of LCC current-output 
resonant converters, based on FMA, can be utilised. It is shown that, at resonance the output voltage of 
the converter can be expressed as follows: 

where Gtr is the voltage gain of the resonant tank and N is transformer turns ratio when expressed as 
N:1. From this perspective the steady-state output-filter current can be expressed as follow: 

Equating the current in (35) and (30), eliminating 
0rCpV via use of (33), assuming resonant operation 

(PF=1), and solving for 
0iCpV  gives: 

Note that two solutions exist for 
0iCpV the other having the opposite magnitude. The solution presented 

in (36) is selected such that the phase of VCp w.r.t ILs is negative i.e 0)/arctan(
00

<
ri CpCp VV . 

In [9] it is also shown that for a given converter specification, the resonant tank components can be 
chosen as follows: 

where A=Cp/Cs, and ωr is the resonant frequency.  These equations will be used to simply the 
remaining analysis. Substituting (33) and (36), into (32c), and eliminating Cp in (32c) via (37a) gives: 

Eliminating Cs in (32b) via (37b), substituting in (38) and solving for 
0iCsV then gives: 

Since all the steady-state conditions are known (at PF=1) the small-signal equations expressed in (27), 
(29) can be evaluated: 
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The state-space small-signal model is now formed from (15), (17), (40),(37a) and (41): 

( )

( )

( )






























−
−

+−
−

−−−
+

−−

=

Lff

f

pr

sr

ssr

rp

rs

rss

RCC
LKK

KKCK
C

LL
KKKC

C
LL

A

/1/1000000
/100000
00/100
0000/100
00/1/1000
0000/1
000000/1
0000/1/10

7673

676663

373633

ω
ω

ω
ω

ω
ω

 

 

(42) 

 
( )[ ]0000000/2 sdc LVB π=  

[ ]10000000=C  
[ ]ToLfCpCsLsCpCsLs VIVVIVVIx

iiirrr
∆∆∆∆∆∆∆∆=  

 

xCy
uBxAx

.
..

=
+=

           where        
PFu
Vy o

∆=
∆=  

 
and, 

42

42

33
164

π
πω

tr

trr

G
G

K
−

−= 4236
16

π
ω

tr

r

G
K −=  

16

8
4237

−
−=

ππ

ω

trtr

rL

GG

NR
K  

4263
16

π
ω

tr

r

G
K −=  

16

64
424266

−
−=

ππ

ω

trtr

r

GG
K

π
ω

tr

rL

G
NR

K
2

67 =  

NGL
K

trf
373

8
π

=  

NGL
G

K
trf

tr
3

42

76

162
π
π −−

=  
 

 

 

To utilise the model, (42), the converter tank gain and resonant frequency must first be evaluated. 
These are obtained by solving (37) for A, Gtr and ωr.  For instance, to calculate Gtr, equate the ωr term 
in both (37a) and (37c), and solve for Gtr , where A=Cp/Cs.  
 
A comparison of the small-signal frequency response prediction between the provided analysis and the 
prototype system, are given in Fig.3, from which very good agreement is seen to exist. Whilst the 
state-space description is 8th order, the system is dominantly 3rd order.  Moreover, since the small-
signal response is found to be constant across the full power-factor range, the small-signal response 
also provides a good approximation to the large-signal behaviour. 
 
From Fig. 7(a) it can be seen that the 3rd order numerically reduced small-signal model provides an 
accurate large-signal model. Both the simulated and experimental output voltage closely follows a 
scaled version of the power factor thus further demonstrating the controller’s linear behaviour. From 
Fig. 7(b) the steady-state linear control behaviour is made evident. As power factor is increased the 
output voltage across the various loads raises linearly. 
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Fig.7 (a) Comparison between experimental and small-signal model response for RL=10Ω during a 
perturbed step change in power factor from PF=0.8 to 0.3. Note that a 3rd order reduced model is 
utilised for the small-signal response. The power factor is scaled by 12.1V since when the power-
factor is unity the theoretical ideal output-voltage of the converter is 12.1V  (b) steady-state output 
voltage as power factor is varied for 10,12,14,16,18,20 Ω loads. Note that 256 linearly spaced power 
factor points are used for each load. 
Conclusion 
A control strategy is provided for the LCC current-output resonant converter that is ultimately, more 
widely applicable to other resonant converter topologies. The methodology is advantageous in that it 
firstly linearises the steady-state input-to-output conversion ratio and, secondly, the large-signal 
converter dynamics become predominantly 3rd order. At present, no control methodologies can boast 
such simple linear behaviour. Through the well-defined behaviour of the power-factor controlled 
converter, the design of an additional controller to obtain closed-loop output-voltage/current control is 
greatly simplified, allowing robust and/or well documented adaptive control methods to be applied. 
This therefore addresses one of the main drawbacks for the use of resonant converters viz. the lack of 
literature on robust control of such systems. 
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