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Abstract

The paper describes the application of state-estimation techniques for the real-time prediction of state-of-
charge (SoC) and state-of-health (SoH) of lead-acid cells. Approaches based on the Extended Kalman
Filter (EKF) are presented to provide correction for offset, drift and state divergence—an unfortunate
feature of more traditional coulomb-counting techniques. Experimental results are employed to
demonstrate the relative attributes of the proposed methodology.

Introduction

Peak power buffers of hybrid electric vehicles (HEVs) are, by their very nature, subject to large dynamic
transients in current and power demand. Road data collected from a Honda Insight HEV (RHOLAB
driving cycle [1]), where peak charge- and discharge-current demands of ~60A and ~-100A, respectively,
are required from the battery pack when subjected to a series of vehicle driving tests [1]. The
accommodation of such operating conditions requires that the management system have accurate
knowledge of the peak power buffer’s SoC to facilitate safe and efficient operation. Failure to control
SoC will ultimately lead to under- or over-charging conditions, which can degrade the ability of the pack
to source/sink subsequent power transients.

A variety of techniques have been proposed to measure or monitor the SoC of a cell or battery, with
charge counting or current integration at present being the most commonly used technique. However, due
to the reliance on integration, errors in terminal measurements due to noise, resolution and rounding are
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cumulative, and large SoC errors can result. Furthermore, manufacturers of HEVs would like predictions
of the State-of-Health (SoH) or State-of-Function (SoF) of a battery pack, since the increasing reliance on
drive-by-wire technologies is making the battery a key safety-critical component of the vehicle.
Knowledge of whether a battery will fail when subject to high transient loadings, as may be experienced
in emergency braking, for instance, is therefore essential. However, SoH monitoring techniques are
currently in their infancy, with little being reported to-date.

Here then, model-based state-estimation techniques are proposed for predicting states of a cell that would
normally be difficult or expensive to measure. Measurements using real-time road data are used to
compare the performance of conventional integration-based methods for estimating SoC, with those
predicted from the presented state estimation schemes. Results show that the proposed methodologies are
superior to more traditional techniques, with accuracy in determining the SoC within 2%, being
demonstrated. Moreover, by accounting for the nonlinearities present within the dynamic cell model, the
application of an EKF is shown to provide verifiable indications of SoH of the cell pack via the real-time
state estimation. Experimental results ultimately show the ability of the EKF to track changes and to
compensate for inaccuracies in the initial estimates of cell model bulk capacitance, that can be considered
as a measure of the cell’s capacity.

Battery Model

A dynamic model of the battery, in the form of state variable equations, is necessary to predict the SoC or
SoH. Here, a generic model [2] consisting of a bulk capacitor, C,, , to characterise the ability of the

battery to store charge, a capacitor to model surface capacitance and diffusion effects within the cell
Curface » @ terminal resistance R;, surface resistance R and end resistance, R, is employed as shown by

Fig.1. The voltage across the bulk- and surface- capacitors are denoted V¢, and Vi, respectively.

The cell tested in this paper is a novel, spiral wound, 8Ah sealed lead-acid cell, with terminals on either
end, developed by Hawker (ENERSYS Inc), Fig. 2. The double terminal encapsulation is introduced to
lower grid currents, and hence, thermal gradients, and thereby promote efficient utilization of the active
materials in the cell, thus leading to a battery that is optimised for the high-power duties typical of hybrid
driving cycles.

Initial parameters of the cell, Fig. 1, are pre-calculated from experimental data, where open-circuit voltage
(OCV) tests are performed upon successive discharges of the battery, by injection of current pulses. An
initial estimate of C,,; is obtained by analyzing the amount of stored energy in the cell (from SoC =1 to

SoC = 0), to a discharge current pulses of 1.53A, applied for t=1800s, every 3600s interval. Note that SoC

=1 is a normalized value used to define a fully-charged cell. The provisional value of C,,. relies on

RS Re

Csmface_ _ TVCS Cbulk - T VCb

Fig. 1: RC Battery model schematic
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Fig. 2: 8Ah sealed lead-acid test cell

calculating the time-constant of the cell in response to high frequency excitation, by subjecting discharge
pulses of 10A, at 500ms intervals, thereby isolating the results from the effects of ¢, . The internal

resistance of the battery is measured as 4.6mQ and it is assumed that R, and R, are equivalent and account
for 75% of total resistance. The complete initial parameters for the cell considered, is provided by Table I.

Table I: Parameters for cell model

Coutt 88372.83 F

Cyufuce 82.11F

R, 0.00375 Q

R. 0.00375 Q

R, 0.002745 O

State variable description of the battery model

The characteristics of the network shown in Fig. 1, are given by (note: by convention, current flowing into
the cell is considered positive):
Vo = IR + 1R, + Ve

Vo =IR, + IR +VCsurface (1)
Equating the two voltage equations and noting that:
I, =V, C

I =Ves Csuiface
a complete state variable description of the network relating the voltages and currents, is obtained as
shown by (3). However, note the third state is obtained by taking the time-derivative of the output voltage,
and assuming d7/dtI ~0 (the rate of change of terminal current, per sampling interval when implemented

digitally, is negligible).

i 1 1 ] i R |
; - 0 Cpu R
Vew CounRs  CpuRy Vey p

R
VCS = ! - ! 0 | Ves |+ CsmfaeceRﬁ. !
CsulfaceRﬁ. CsuifaceRl
VO Yo Re2 RR; R R.R
AGBD 0 A(B3) 2 + + 2
N _CsmfaceRﬁ. CounReR;, CsurfaceRA CsulfaceRﬁ. ]
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A@B) = Ry >+ R 5= Ry 5+ Ry 5
CbulkR/l CsmfaceRﬁ. CbulkReRﬁ. CsmfaceRﬂ.
A(3,3) = Ry - !

CoutcReR; Curfuceli

where R, =R, +R; .

3)

Assuming, for now, that cell parameters are time invariant quantities, the recursive KF algorithm, Fig. 3,
is applied, where an equivalent discrete-time model of (3) is obtained by using Euler transformation.

T, T,

1- < ¢ 0
CouteRi CpuncRy
Ag=| e L 0
CsurfaceRA CsmfaceRA
| A,(3D) 0 4,63)]
I TR, ]
CounR;
I R,
Bd - CsmfaceRl
TcRe2 __LRR n TR i T.R.R;
_CsulfaceRi2 CoutReRy  CourfaceR; CsmfaceRﬁz |

C,=C
where
Ay = TR, S+ IR, - TR’ S+ T.R, .
CounRy™  CoppaceRi™  CpunReRy™  Coyuceln
4,69=1+—2f L

CounReR:  CourfaceRs

Comparison of State of Charge estimation technique

“)

The stochastic principles underpinning the Kalman Filter (KF) are appealing for this investigation, since it
is recognised that the presence of disturbances stemming from sensor noise on the cell terminal
measurements, and the use of non-ideal dynamic models, make it impossible to predict with certainty the
states of the system over prolonged time periods—a statistical predictor/corrector formulation thereby
providing obvious advantages. Here then, KF is applied, Fig. 3, to the real-time estimation of SoC of a
single cell that is subject to a RHOLAB driving cycle [1], see Fig. 4. Since only terminal quantities of the
battery can be measured, the input is defined as # =17, and the measured output is y =V,,. The initial cell

SoC is set to 0.8, this being the defined operating point for partial SoC on the HEV driving profile.
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Initial estimate X,
and error covariance Py Q and R

!

Prediction
Determine state

Xpaane = AqXpp By,

Determine error covariance
_ T T
l)k+1/k - Ade/kAd + l—‘(21—‘

Correction
Determine Kalman gain
K, =P.,C,/IC,P.,C, +R]"
Employ correction on prediction of states
)?’-k+1/k+1 = )%k-v-l/k + Kk+12k+1

Determine error covariance
Pk+1/k+1 =[I- Kk+1Cd ]Pk+1/k

1

Fig. 3: Recursive Kalman Filter algorithm

Upon subjecting the cell to the RHOLAB driving cell-current profile, excellent convergence of the
estimated output voltage from the KF is seen with negligible error (< 0.05 V), Fig. 5(a). Figure 5(b)
shows the estimated bulk and surface capacitor voltages. Furthermore, results using conventional SoC
estimation, by the integration of current method, with charging efficiency fixed at 0.97 [1], and those from
the proposed KF scheme, are given in Fig. 6. Having been subjected to a RHOLAB driving cycle, at
t=1400s, the tests are terminated, and the remnant charge in the cell is measured using a 1.53A discharge,
to a terminal voltage of 1.7V, and noting the remaining Ampere-hours. This corresponds to a final SoC of
the cell of 0.167. From Fig. 6, it can be seen that the performance of the KF is excellent, and, although
both SoC estimation techniques follow the correct profile, the integration-based method demonstrates
significant drift over time, with an error of #15% ensuing, whereas the KF consistently provides estimates

within 2% of the measured values.
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Fig. 4: Typical RHOLAB [1] driving cycle cell current
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Fig. 5: Implementation of KF on RHOLAB cycle (a) measured and estimated cell voltage (b) estimated
bulk and surface capacitor voltage
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Fig. 6: Comparison of determination of SoC by conventional means by integration of current and from
estimated bulk capacitor voltage
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Estimation of State of Health of cell

SoH is the ability of a cell to store energy, source and sink high currents and retain charge over extended
periods, relative to its initial or nominal capabilities. The available charge stored within a fully-charged
cell is expected to fall with cell usage. Such capacity-loss mechanisms generally occur slowly in VRLA
batteries that are cycled at low-rates over their full SoC range. However, when operated as a peak power
buffer, in a HEV system, the cells are operated at a Partial State-of-Charge (PSoC) i.e. the cell is never
cycled over its full SoC range, and is subjected to both high charge and discharge currents. Studies have
shown that this PSoC operation can lead to truncated service life in VRLA cells [3,4]. Such capacity loss
can be deemed a loss of cell SoH. Early detection of SoH degradation would allow a ‘smart’ battery pack
to take remedial action, such as the application of conditioning routines to the cell, to remove small
sulphate crystals before they form large inactive crystals, thereby restoring the cells capacity. Measuring
cell capacity by the standard means of a low current discharge is impractical for HEV applications, and
online techniques that utilise only cell terminal measurements, made whilst the HEV is driven, are
therefore required.

Here, a proposed means of estimating bulk capacitance C,,, , by adding an extra state, dC,,; /dt =0, into
the observer structure, is demonstrated. Since the derivatives of V., and V, are now coupled by non-

linear elements, an EKF is required for effective estimation of state variables. However, note that the
proposed realisation results in an increase in order of the Jacobians, covariance, noise and disturbance
matrices, with a consequential increase in computation overhead. The proposed non-linear battery model
is written in the form:

x= f(x,u)
y=C(x) ©)

where f(x,u) is given by (6)

i _ VCba n VCSOl n IRSOl
Ry Ry Ry

=V Ve Voal s fw=| Cougace | Ri B2 R;

Vep fl+Vy- f2+1-f3

- 0 -
2

f1= RSCZ*' = z_Rsaz+ = 2

Ri CsmfaceRA ReRxl CsurfaceRA
f2= R 1

ReR/I CsulfaceRi

2
P i _RRa, R RR i
Csmface R; RRy G urfac ey Csmface R;

where C(x)=V0, a=l/Cbulk R and R; =R, +R;. (6)
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Here, the EKF requires a small-signal model of the system, at each sample step, about the current

operating point, x,, #p and is given by:

Sc=A,0x+Bdu, J =Cdx

where A, =F(x) | andis defined by (8):

[ 2 0
R; R;
. 1 B 1 0
F(x)=% = CsmfaceRA CsmfaceRﬂ
L 0 0 0

F(,4) = _@4_&4_&

R, R; R;
2
Fan--R&, R Re, R
R; CsurfaceRl R.R; CsurfaceRl
2
F(.4) = VCb1§s _VYoRs™ | VoRs _ RiRi1
R; R.R; R.R; R.R;
~ T
s [re ko
ou x(),u(t) Ri CsulfaceRi
c-& =[o 0 1 0]
Aty

that can be discretized, to give (9) and used in the KF algorithm described previously in Fig. 3.:

X1 =Aqx; +Bguy

Vi1 =CaXpn

R,

F(,4)

F(34)
0

(7

®

€)

The SoH of known cells has previously been evaluated [3] by performing continuous power cycling tests
(using the RHOLAB profile shown in Fig. 4), and during the tests, the cells suffered a measured loss of
capacity of =0.77Ah [3]. Whilst performing the tests, the EKF is employed, and the variation of C,,; is
estimated, Fig. 7(a), and ultimately over time indicates a reduction of =10% during the tests,

corresponding to an average loss of cell capacity of ~0.8 Ah for a nominal 8Ah cell- hence comparing well
with the measured loss of capacity. Figure 7(b), shows the voltage profile over the continuous power

cycling test.
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Fig. 7: On-line EKF employed to predict SoH of cell pack (a) estimated bulk capacitance C,,,;,
(b) cell terminal voltage

Conclusion

This paper presents an alternative approach to estimating the SoC of a cell pack by implementation of
observer-based techniques. Using generic models like the one presented to describe the dynamic
behaviour of lead-acid cells, large state errors and divergence ensue when estimating SoC. However,
rather than increasing the complexity of the cell model to closely match the real system, the application of
a KF, with its inherent predictor-corrector mechanism, is shown to accommodate such inadequacies. In
particular, a comparison of SoC estimates using the presented KF technique, and the more conventional
integration of current method, is undertaken using “road data” collected from a Honda Insight HEV driven
on a test track. The presented results show a significant improvement in SoC estimation from the
proposed KF methodology, when compared to the more traditional current integration method.
Furthermore, extensions for SoH on-line monitoring, by employing an EKF is also presented—using only
measurements of cell terminal quantities as input.

Ultimately, the complete HEV Smart VRLA battery pack will consist of a series of cells, cascaded
together in a module. However, within the module, one cell is always out of circuit, hereby allowing
active conditioning routines to be applied, hence the module consists of n+1cells (n being the series string
length). Knowledge of SoC and SoH of each individual cell obtained from the observer will allow the
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selection of cell most in need of conditioning and the chosen cell is automatically taken out of the series
string. Such control of the Smart VRLA module will significantly increase the lifetime of the cells for
HEV demands. Furthermore, from a manufacturers perspective, such data is extremely important for the
ultimate prediction of State-of-Function (SoF), which describes the ability of a cell to perform adequately
under HEV demands. SoF will give a prediction of available capacity, and discharge and recharge
capability, thereby allowing Smart VRLA module to forecast the response of each cell to driving
demands, and leading to optimal utilisation of the battery pack with regard to performance and lifetime,
and therefore, better overall energy management within the vehicle.
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