877 research outputs found

    Relativistic Hartree-Bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei

    Get PDF
    The Relativistic Hartree Bogoliubov (RHB) model is applied in the self-consistent mean-field approximation to the description of the neutron halo in the mass region above the s-d shell. Pairing correlations and the coupling to particle continuum states are described by finite range two-body forces. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. Calculations are performed for the isotopic chains of Ne and C nuclei. We find evidence for the occurrence of neutron halo in heavier Ne isotopes. The properties of the 1f-2p orbitals near the Fermi level and the neutron pairing interaction play a crucial role in the formation of the halo. Our calculations display no evidence for the neutron halo phenomenon in C isotopes.Comment: 7 pages, Latex, 5 P.S. Figures, To appear in Phys. Rev. Let

    Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences

    Get PDF
    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). <br><br> In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however

    Relativistic Hartree-Bogoliubov description of ground-state properties of Ni and Sn isotopes

    Get PDF
    The Relativistic Hartree Bogoliubov (RHB) theory is applied in the description of ground-state properties of Ni and Sn isotopes. The NL3 parameter set is used for the effective mean-field Lagrangian, and pairing correlations are described by the pairing part of the finite range Gogny interaction D1S. Fully self-consistent RHB solutions are calculated for the Ni (28≀N≀5028\leq N\leq 50) and Sn (50≀N≀8250\leq N\leq 82) isotopes. Binding energies, neutron separation energies, and proton and neutron rmsrms radii are compared with experimental data. The model predicts a reduction of the spin-orbit potential with the increase of the number of neutrons. The resulting energy splittings between spin-orbit partners are discussed, as well as pairing properties calculated with the finite range effective interaction in the pppp channel.Comment: 11 pages, RevTex, 12 p.s figures, submitted to Phys. Rev.

    Spherical Relativistic Hartree theory in a Woods-Saxon basis

    Full text link
    The Woods-Saxon basis has been suggested to replace the widely used harmonic oscillator basis for solving the relativistic mean field (RMF) theory in order to generalize it to study exotic nuclei. As examples, relativistic Hartree theory is solved for spherical nuclei in a Woods-Saxon basis obtained by solving either the Schr\"odinger equation or the Dirac equation (labelled as SRHSWS and SRHDWS, respectively and SRHWS for both). In SRHDWS, the negative levels in the Dirac Sea must be properly included. The basis in SRHDWS could be smaller than that in SRHSWS which will simplify the deformed problem. The results from SRHWS are compared in detail with those from solving the spherical relativistic Hartree theory in the harmonic oscillator basis (SRHHO) and those in the coordinate space (SRHR). All of these approaches give identical nuclear properties such as total binding energies and root mean square radii for stable nuclei. For exotic nuclei, e.g., 72^{72}Ca, SRHWS satisfactorily reproduces the neutron density distribution from SRHR, while SRHHO fails. It is shown that the Woods-Saxon basis can be extended to more complicated situations for exotic nuclei where both deformation and pairing have to be taken into account.Comment: 12 pages, 9 figure

    Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    Get PDF
    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC_0). It varies in the range of 10–30 g mol^(−1), depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate

    Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Get PDF
    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed

    Proton drip-line nuclei in Relativistic Hartree-Bogoliubov theory

    Get PDF
    Ground-state properties of spherical even-even nuclei 14≀Z≀2814\leq Z \leq 28 and N=18,20,22N=18,20,22 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction D1S. Binding energies, two-proton separation energies, and proton rmsrms radii that result from fully self-consistent RHB solutions are compared with experimental data. The model predicts the location of the proton drip-line. The isospin dependence of the effective spin-orbit potential is discussed, as well as pairing properties that result from the finite range interaction in the pppp channel.Comment: 12 pages, RevTex, 10 p.s figures, submitted to Phys. Rev.

    Top EW couplings at Linear Colliders

    Get PDF
    In this talk, we present the latest study of e+e− → tÂŻt, based on a detailed simulation of the ILD detector concept, which assumes a centre-of-mass energy of √s = 500 GeV and a luminosity of L = 500fb−1, equality shared between the incoming beam polarisations of P e−,e+ = (±0.8,∓0.3). The study comprises the cross sections, the forward-backward asymmetry and the slope of the helicity angle asymmetry. The vector and axial vector couplings are separately determined for the photon and the Z component. The tensorial CP-conserving coupling can be also extracted by assuming the other couplings to be the SM values. We show that the sensitivity to new physics would be dramatically improved with respect to what is expected from LHC for electroweak couplings

    A precise characterisation of the top quark electro-weak vertices at the ILC

    Get PDF
    Top quark production in the process e+e−→ttˉe^+e^- \to t\bar{t} at a future linear electron positron collider with polarised beams is a powerful tool to determine indirectly the scale of new physics. The presented study, based on a detailed simulation of the ILD detector concept, assumes a centre-of-mass energy of s=500 \sqrt{s}=500\,GeV and a luminosity of L=500 fb−1\mathcal{L}=500\,{\rm fb}^{-1} equally shared between the incoming beam polarisations of Pe−,Pe+=±0.8,∓0.3\mathcal{P}_{e^-}, \mathcal{P}_{e^+} =\pm0.8,\mp0.3. Events are selected in which the top pair decays semi-leptonically and the cross sections and the forward-backward asymmetries are determined. Based on these results, the vector, axial vector and tensorial CPCP conserving couplings are extracted separately for the photon and the Z0Z^0 component. With the expected precision, a large number of models in which the top quark acts as a messenger to new physics can be distinguished with many standard deviations. This will dramatically improve expectations from e.g. the LHC for electro-weak couplings of the top quark.Comment: This work is an update of arXiv:1307.8102, minor changes w.r.t. v1 (typos, wrong grammar, incomplete sentences etc.

    Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

    Full text link
    In this paper we study a Tikhonov-type method for ill-posed nonlinear operator equations \gdag = F( ag) where \gdag is an integrable, non-negative function. We assume that data are drawn from a Poisson process with density t\gdag where t>0t>0 may be interpreted as an exposure time. Such problems occur in many photonic imaging applications including positron emission tomography, confocal fluorescence microscopy, astronomic observations, and phase retrieval problems in optics. Our approach uses a Kullback-Leibler-type data fidelity functional and allows for general convex penalty terms. We prove convergence rates of the expectation of the reconstruction error under a variational source condition as t→∞t\to\infty both for an a priori and for a Lepski{\u\i}-type parameter choice rule
    • 

    corecore