490 research outputs found

    Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences

    Get PDF
    Primary biological aerosol particles (PBAP) are an important subset of air particulate matter with a substantial contribution to the organic aerosol fraction and potentially strong effects on public health and climate. Recent progress has been made in PBAP quantification by utilizing real-time bioaerosol detectors based on the principle that specific organic molecules of biological origin such as proteins, coenzymes, cell wall compounds and pigments exhibit intrinsic fluorescence. The properties of many fluorophores have been well documented, but it is unclear which are most relevant for detection of atmospheric PBAP. The present study provides a systematic synthesis of literature data on potentially relevant biological fluorophores. We analyze and discuss their relative importance for the detection of fluorescent biological aerosol particles (FBAP) by online instrumentation for atmospheric measurements such as the ultraviolet aerodynamic particle sizer (UV-APS) or the wide issue bioaerosol sensor (WIBS). <br><br> In addition, we provide new laboratory measurement data for selected compounds using bench-top fluorescence spectroscopy. Relevant biological materials were chosen for comparison with existing literature data and to fill in gaps of understanding. The excitation-emission matrices (EEM) exhibit pronounced peaks at excitation wavelengths of ~280 nm and ~360 nm, confirming the suitability of light sources used for online detection of FBAP. They also show, however, that valuable information is missed by instruments that do not record full emission spectra at multiple wavelengths of excitation, and co-occurrence of multiple fluorophores within a detected sample will likely confound detailed molecular analysis. Selected non-biological materials were also analyzed to assess their possible influence on FBAP detection and generally exhibit only low levels of background-corrected fluorescent emission. This study strengthens the hypothesis that ambient supermicron particle fluorescence in wavelength ranges used for most FBAP instruments is likely to be dominated by biological material and that such instrumentation is able to discriminate between FBAP and non-biological material in many situations. More detailed follow-up studies on single particle fluorescence are still required to reduce these uncertainties further, however

    Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol

    Get PDF
    The dominant component of atmospheric, organic aerosol is that derived from the oxidation of volatile organic compounds (VOCs), so-called secondary organic aerosol (SOA). SOA consists of a multitude of organic compounds, only a small fraction of which has historically been identified. Formation and evolution of SOA is a complex process involving coupled chemical reaction and mass transport in the gas and particle phases. Current SOA models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation. Based on molecular identification of SOA oxidation products, we show here that the chemical evolution of SOA from a variety of VOC precursors adheres to characteristic "molecular corridors" with a tight inverse correlation between volatility and molar mass. The slope of these corridors corresponds to the increase in molar mass required to decrease volatility by one order of magnitude (-dM / dlogC_0). It varies in the range of 10–30 g mol^(−1), depending on the molecular size of the SOA precursor and the O : C ratio of the reaction products. Sequential and parallel reaction pathways of oxidation and dimerization or oligomerization progressing along these corridors pass through characteristic regimes of reaction-, diffusion-, or accommodation-limited multiphase chemical kinetics that can be classified according to reaction location, degree of saturation, and extent of heterogeneity of gas and particle phases. The molecular corridors and kinetic regimes help to constrain and describe the properties of the products, pathways, and rates of SOA evolution, thereby facilitating the further development of aerosol models for air quality and climate

    Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    Get PDF
    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed

    Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of ?-pinene

    No full text
    International audienceThe temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of ?-pinene was studied in a flow reactor at 263 K?303 K and 1007 hPa under dry and humid conditions (0% and 26%?68% relative humidity, respectively). The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.18?0.39 at high particle mass concentrations (Mo). Under dry conditions, however, the measurement data exhibited significant oscillatory deviations from the predicted linear increase with inverse temperature (up to 50% at high Mo). Under humid conditions the SOA yield exhibited a linear decrease with inverse temperature, which is opposite to modelled temperature dependence and implies that the model substantially overestimates the yield at low temperatures and underestimates it at high temperatures (deviations up to 80% at high Mo). For the atmospherically relevant concentration level of Mo=10 ?g m?3 and temperature range 263 K?293 K, the results from humid experiments in this study indicate that the SOA yield of ?-pinene ozonolysis may be well represented by an average value of 0.15 with an uncertainty estimate of ±0.05. When fitting the measurement data with a two-product model, both the partitioning coefficients (Kom,i) and the stoichiometric yields (?i) of the low-volatile and semi-volatile model species were found to vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are strongly dependent on temperature and the presence of water vapour. In fact, the oscillatory positive temperature dependence observed under dry conditions and the negative temperature dependence observed under humid conditions indicate that the SOA yield is governed much more by the temperature and humidity dependence of the involved chemical reactions than by vapour pressure temperature dependencies. We suggest that the elucidation and modelling of SOA formation need to take into account the effects of temperature and humidity on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products

    Temperature dependence of secondary organic aerosol yield from the ozonolysis of ?-pinene

    No full text
    International audienceThe temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of ?-pinene was studied in a flow reactor at 263?303 K and 1007 hPa. The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.22?0.39 at high particle mass concentrations. However, the measurement data exhibited significant deviations (up to 50%) from the predicted linear dependence on inverse temperature. When fitting the measurement data with a two-product model, we found that both the partitioning coefficients (Kom,i) and the stoichiometric yields (?i) of the low-volatile and semi-volatile species vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are dependent on temperature. We suggest that the modelling of secondary organic aerosol formation in the atmosphere needs to take into account the effects of temperature on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products

    Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    Get PDF
    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM<sub>2.5</sub>) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). <br><br> From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. <br><br> Mass fractions of DNA in PM<sub>2.5</sub> were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m<sup>−3</sup>, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~10<sup>8</sup> haploid bacterial genomes or ~10<sup>5</sup> haploid human genomes, respectively). <br><br> Most of the bacterial sequences found in PM<sub>2.5</sub> were from <i>Proteobacteria</i> (42) and some from <i>Actinobacteria</i> (10) and <i>Firmicutes</i> (1). The fungal sequences were characteristic for <i>Ascomycota</i> (3) and <i>Basidiomycota</i> (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). <br><br> Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM<sub>2.5</sub> samples, but only 40% of the T-RF peaks did correspond to one of the detected bacterial sequences. The results demonstrate that the T-RFLP analysis covered more of the bacterial diversity than the sequence analysis. Shannon-Weaver indices calculated from both sequence and T-RFLP data indicate that the bacterial diversity in the rural samples was higher than in the urban and alpine samples. Two of the bacterial sequences (<i>Gammaproteobacteria</i>) and five of the T-RF peaks were found at all sampling locations

    Lattice Gauge Description of Colliding Nuclei

    Get PDF
    We propose a novel formalism for simultaneously describing both, the hard and soft parton dynamics in ultrarelativistic collisions of nuclei. The emission of gluons from the initially coherent parton configurations of the colliding nuclei and low-ptp_t color coherence effects are treated in the framework of a Yang-Mills transport equation on a coupled lattice-particle system. A collision term is added to the transport equation to account for the remaining intermediate and high-ptp_t interactions in an infrared finite manner.Comment: 8 page

    3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions

    Get PDF
    Abstract. Dynamical and microphysical processes in pyroconvective clouds in mid-latitude conditions are investigated using idealized three-dimensional simulations with the Active Tracer High resolution Atmospheric Model (ATHAM). A state-of-the-art two-moment microphysical scheme building upon a realistic parameterization of cloud condensation nuclei (CCN) activation has been implemented in order to study the influence of aerosol concentration on cloud development. The results show that aerosol concentration influences the formation of precipitation. For low aerosol concentrations (NCN = 200 cm−3), rain droplets are rapidly formed by autoconversion of cloud droplets. This also triggers the formation of large graupel and hail particles, resulting in an early onset of precipitation. With increasing aerosol concentration (NCN = 1000 cm−3 and NCN = 20 000 cm−3) the formation of rain droplets is delayed due to more but smaller cloud droplets. Therefore, the formation of ice crystals and snowflakes becomes more important for the eventual formation of graupel and hail, which is delayed at higher aerosol concentrations. This results in a delay of the onset of precipitation and a reduction of its intensity with increasing aerosol concentration. This study is the first detailed investigation of the interaction between cloud microphysics and the dynamics of a pyroconvective cloud using the combination of a high-resolution atmospheric model and a detailed microphysical scheme. This work has been supported by an International Max Planck Research School fellowship and the Max Planck Society.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/7573/2014/acp-14-7573-2014.html

    Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    Get PDF
    International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth
    • 

    corecore