27 research outputs found
A semi-analytical foreshock model for energetic storm particle events inside 1 AU
We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP) events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978), appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simulation model of the coupled particle acceleration and Alfvén-wave generation upstream of the shock. Our results show that analytical estimates of the cut-off energy resulting from the simplified theory and frequently used in SEP modelling are overestimating the cut-off momentum at the shock by one order magnitude. We show also that the cut-off momentum observed remotely far upstream of the shock (e.g., at 1 AU) can be used to infer the properties of the foreshock and the resulting energetic storm particle (ESP) event, when the shock is still at small distances from the Sun, unaccessible to the in-situ observations. Our results can be used in ESP event modelling for future missions to the inner heliosphere, like the Solar Orbiter and Solar Probe Plus as well as in developing acceleration models for SEP events in the solar corona.</p
High Lipid Content of Prey Fish and nâ3 PUFA Peroxidation Impair the Thiamine Status of Feeding-Migrating Atlantic Salmon (Salmo salar) and Is Reflected in Hepatic Biochemical Indices
Signs of impaired thiamine (vitamin B1) status in feeding-migrating Atlantic salmon (Salmo salar) were studied in three Baltic Sea areas, which differ in the proportion and nutritional composition of prey fish sprat (Sprattus sprattus) and herring (Clupea harengus). The concentration of nâ3 polyunsaturated fatty acids (nâ3 PUFAs) increased in salmon with dietary lipids and nâ3 PUFAs, and the hepatic peroxidation product malondialdehyde (MDA) concentration increased exponentially with increasing nâ3 PUFA and docosahexaenoic acid (DHA, 22:6nâ3) concentration, whereas hepatic total thiamine concentration, a sensitive indicator of thiamine status, decreased with the increase in both body lipid and nâ3 PUFA or DHA concentration. The hepatic glucose 6-phosphate dehydrogenase activity was suppressed by high dietary lipids. In salmon muscle and in prey fish, the proportion of thiamine pyrophosphate increased, and that of free thiamine decreased, with increasing body lipid content or PUFAs, or merely DHA. The thiamine status of salmon was impaired mainly due to the peroxidation of nâ3 PUFAs, whereas lipids as a source of metabolic energy had less effect. Organochlorines or general oxidative stress did not affect the thiamine status. The amount of lipids, and, specifically, their long-chain nâ3 PUFAs, are thus responsible for generating thiamine deficiency, and not a prey fish species per se
Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar)
Abstract
Mikkonen, J., KeinĂ€nen, M., Casini, M., Pönni, J., and Vuorinen, P. J. 2011. Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar). â ICES Journal of Marine Science, 68: 2134â2144. The M74 syndrome of Baltic salmon (Salmo salar), which appears as increased yolk-sac fry mortality (YSFM), impairs the reproduction of salmon stocks. Changes in the prey stocks of Baltic salmon in its two feeding areas, the southern Baltic Proper (BPr), where sprat (Sprattus sprattus) was the main prey species during the high incidence of M74, and the Bothnian Sea, where herring (Clupea harengus) is the dominant species, were analysed in relation to salmon growth and size and in relation to the incidence of M74. The high condition factor (CF > 1.05) of prespawning salmon predicted high YSFM. From the various stock factors of sprat and herring in the southern BPr, the biomass of sprat had the strongest positive relationships with the CF of prespawning salmon, and the total prey biomass with YSFM. It is concluded that the ample but unbalanced food resources for salmon in the BPr, primarily sprat, induce M74. By reducing the fishing pressure on cod (Gadus morhua) and by more effectively managing the sprat fishery in years when the cod stock is weak, the incidence of the M74 syndrome could be reduced and even prevented.</jats:p
Fatty acid signatures connect thiamine deficiency with the diet of the Atlantic salmon (Salmo salar) feeding in the Baltic Sea
Artikkeli numero 161201
High Lipid Content of Prey Fish and nâ3 PUFA Peroxidation Impair the Thiamine Status of Feeding-Migrating Atlantic Salmon (Salmo salar) and Is Reflected in Hepatic Biochemical Indices
Signs of impaired thiamine (vitamin B1) status in feeding-migrating Atlantic
salmon (Salmo salar) were studied in three Baltic Sea areas, which differ in the proportion and nutritional composition of prey fish sprat (Sprattus sprattus) and herring (Clupea harengus). The concentration of n-3 polyunsaturated fatty acids (n-3 PUFAs) increased in salmon with dietary lipids and n-3 PUFAs, and the hepatic peroxidation product malondialdehyde (MDA) concentration increased exponentially with increasing n-3 PUFA and docosahexaenoic acid (DHA, 22:6n-3) concentration, whereas hepatic total thiamine concentration, a sensitive indicator of thiamine status, decreased with the increase in both body lipid and n-3 PUFA or DHA concentration. The hepatic glucose 6-phosphate dehydrogenase activity was suppressed by high dietary lipids. In salmon muscle
and in prey fish, the proportion of thiamine pyrophosphate increased, and that of free thiamine decreased, with increasing body lipid content or PUFAs, or merely DHA. The thiamine status of salmon was impaired mainly due to the peroxidation of n-3 PUFAs, whereas lipids as a source of metabolic energy had less effect. Organochlorines or general oxidative stress did not affect the thiamine status. The amount of lipids, and, specifically, their long-chain n-3 PUFAs, are thus responsible for generating thiamine deficiency, and not a prey fish species per se
The thiamine deficiency syndrome M74, a reproductive disorder of Atlantic salmon (Salmo salar) feeding in the Baltic Sea, is related to the fat and thiamine content of prey fish
Abstract
KeinĂ€nen, M., Uddström, A., Mikkonen, J., Casini, M., Pönni, J., MyllylĂ€, T., Aro, E., and Vuorinen, P. J. 2012. The thiamine deficiency syndrome M74, a reproductive disorder of Atlantic salmon (Salmo salar) feeding in the Baltic Sea, is related to the fat and thiamine content of prey fish. â ICES Journal of Marine Science, 69: 516â528. This study clarifies how the diet of Baltic salmon leads to thiamine deficiency in eggs, and consequently to M74 mortality of yolk-sac fry. The main prey species, sprat (Sprattus sprattus) and herring (Clupea harengus membras), and their biomass in the Baltic Proper (BPr) and the Bothnian Sea, the two feeding grounds of salmon originating from the northern Gulf of Bothnia rivers, are compared. The thiamine concentration of both prey species is lowest in the youngest age groups. Because average fat content and energy density are greater in sprat than in herring, and greatest in youngest sprat, the supply of thiamine per unit energy is least in a diet containing many young sprat. Also, the greater is the supply of thiamine and fat from sprat in the southern BPr in the preceding year, the lower the concentration of thiamine in salmon eggs. Thiamine deficiency in eggs results from an unbalanced diet abundant in fatty prey fish, such as young sprat, from which the supply of thiamine is insufficient in proportion to the supply of energy and unsaturated fatty acids for salmon, which must undergo a long prespawning fasting period.</jats:p