49 research outputs found

    Sustained release of prostaglandin E2 in fibroblasts expressing ectopically cyclooxygenase 2 impairs P2Y-dependent Ca2+-mobilization

    Get PDF
    The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca2+-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2was added exogenously to the culture medium. This Ca2+-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2is involved in the regulation of P2Y signaling in these cells.This work was supported by Grants BFU2011-24760 and BFU2011-24743 from MINECO, S2010/BMD-2378 from Comunidad de Madrid, Red de Investigación Cardiovascular, RIC, RD12/0042/0019, and Fundación Marcelino Botín (to María Teresa Miras-Portugal). RIC and Ciberehd are funded by the Instituto de Salud Carlos III.Peer Reviewe

    Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy

    Get PDF
    Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells

    Veterinaria es calidad: Evaluación contínua y autoevaluación

    Get PDF
    El documento recoge los resultados del proyecto de Innova-Gestion UCM desarrollado durante los años 2016/2017 para la evaluación por rúbrica y online, formando, aplicando y analizando sus resultados. También se exponen los datos preliminares de la opinión de docentes y alumnos sobre su satisfacción con el actual Grado en Veterinaria. Estos resultados son, además, el punto de partida, para continuar mejorando la calidad de la docencia del centro

    Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y13-like receptors

    Get PDF
    Astrocytes exhibit a form of excitability based on variations of intracellular Ca2+ concentration in response to various stimuli, including ADP, ATP, UTP and dinucleotides. Here, we investigate the presence of the recently cloned ADP-sensitive receptors, P2Y12 and P2Y13 subtypes, which are negatively coupled to adenylate cyclase, in cerebellar astrocytes. We checked the effect of specific agonists, 2-methylthioadenosine diphosphate (2MeSADP) and ADP, on adenylate cyclase stimulation induced by isoproterenol. Both agonists significantly reduced the cAMP accumulation induced by isoproterenol. The inhibitory effect was concentration-dependent with IC50 values of 46 ± 13 and 23 ± 14 nM for 2MeSADP and ADP, respectively. The experiments were carried out in the presence of MRS-2179, a specific antagonist of P2Y1 receptor, to avoid any contribution of this receptor. Using fura-2 microfluorimetry we also proved that astrocytes responded to 2MeSADP stimulations with calcium responses in the absence and also in the presence of MRS-2179. Both effects, inhibition of adenylate cyclase and intracellular calcium mobilization, were not modified by 2MeSAMP, an antagonist of P2Y12 receptor, suggesting that were mediated by P2Y13-like receptors

    Papel fisiológico de los nucleótidos extracelulares en el sistema nervioso central: señalización vía receptores P2X y P2Y

    Get PDF
    In the last few years nucleotide receptors, the ionotropic P2X1-7 subunits and the metabotropic P2Y1, 2, 4, 6, 11, 12, 13, 14, have acquired an excepcional importance due to their strategic location in organs and tissues, their great variety along with the complexity of the associated signalling pathways and the first evidence of the serious alterations entailed in their dysfunctions. Our group has been pioneer in the characterization of these receptors in the nervous system, where we defined their location and functionality. The abundant presence, at a presynaptic level, of P2X3 and P2X7 should be emphasized, where by means of calcium intake they induce neurotransmitter exocytosis, such as glutamate, GABA, catecholamines and acetylcholine among others, as described in previous works by our group. In addition, they induce an extensive remodeling of the terminal’s cytoskeleton and exocytotic mechanisms through CaMKII and they can interact widely with other ionotropic and metabotropic receptors co-existing in nearby areas. Neural cells also exhibit the presence of most P2Y receptors signalling through a large variety of intracellular cascades. Recently we have demostrated that P2Y metabotropic receptors of the sub-family activated by ADP, especially P2Y13, are connected with the signalling towards GSK3 and â-catenin, opening new ways of understading the nucleotide function in survival and maintenance of neural cells. In addition both P2X and P2Y receptors play a role in early developmental stages and neural maturation where their function has to be fully understanded. Nucleotide receptors are also very abundant in glial cells, and our group has shown that most P2Y receptors are present and fully functional in cultured astrocytes, where, depending on the subtype receptor they activate a large variety of signalling cascades.En los ultimos anos los receptores de nucleotidos, receptores ionotropicos P2X1-7 y metabotropicos P2Y1, 2, 4, 6, 11, 12, 13, 14, han adquirido una importancia excepcional debido a su localizacion estrategica en organos y tejidos, a su gran variedad junto con la complejidad de vias de senalizacion a las que estan asociados y a las primeras evidencias de importantes alteraciones debidas a su mal funcionamiento. Nuestro grupo ha sido pionero en la caracterizacion estos receptores en el sistema nervioso, donde definimos su localizacion y su funcionalidad. La abundante presencia, a nivel presinaptico, de las subunidades P2X3 y P2X7 debe ser resaltada, donde gracias a la entrada de calcio inducen la exocitosis de varios neurotransmisores, como glutamato, GABA, catecolaminas y acetilcolina entre otros, como ha sido descrito por nuestro grupo en trabajos previos. Ademas, estos receptores inducen una profunda remodelacion del citoesqueleto de las terminales nerviosas y de los mecanismos exocitoticos a traves de la CaMKII y pueden interactuar con otros receptores ionotropicos y metabotropicos co-existentes en sus cercanias. La mayoria de los receptores P2Y tambien estan presentes en las celulas nerviosas, activando vias de senalizacion a traves de una gran variedad de cascadas intracelulares. Recientemente hemos demostrado que los receptores metabotropicos P2Y pertenecientes a la sub-familia de receptores activados por ADP, especialmente el P2Y13, estan conectados con la senalizacion hacia GSK3 y ƒÀ-catenina, lo que abre nuevas vias para la comprension de la funcion de los nucleotidos en la supervivencia y el mantenimiento de las celulas nerviosas. Ademas, tanto los receptores P2X como los P2Y juegan un papel en los estadios iniciales del desarrollo y en la maduracion neuronal donde su funcion aun ha de ser plenamente comprendida. Los receptores de nucleotidos son tambien muy abundantes en las celulas gliales, y nuestro grupo ha demostrado que la mayoría de los receptores P2Y están presentes y son plenamente funcionales en astrocitos en cultivo, donde, dependiendo del subtipo de receptor, activan una gran variedad de cascadas de señalización

    EstuPlan: Methodology for the development of creativity in the resolution of scientific and social problems

    Full text link
    [EN] Creative thinking is necessary to generate novel ideas and solve problems. "EstuPlan" is a methodology in which knowledge and creativity converge for the resolution of scientific problems with social projection. It is a training programme that integrates teachers, laboratory technicians and PhD students, master and undergraduate students which form working groups for the development of projects. Projects have a broad and essential scope and projection in terms of environmental problems, sustainable use of natural resources, food, health, biotechnology or biomedicine. The results show the success of this significant learning methodology using tools to develop creativity in responding to scientific and social demand for problem-solving to transfer academic knowledge to different professional environments. Bioplastics, Second Life of Coffee, LimBio, Algae oils, Ecomers, Caring for the life of your crop and Hate to Deforestate are currently being developed.Astudillo Calderón, S.; De Díez De La Torre, L.; García Companys, M.; Ortega Pérez, N.; Rodríguez Martínez, V.; Alzahrani, S.; Alonso Valenzuela, R.... (2019). EstuPlan: Methodology for the development of creativity in the resolution of scientific and social problems. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 711-717. https://doi.org/10.4995/HEAD19.2019.9205OCS71171
    corecore