109 research outputs found

    Growth-promoting effects of sustained swimming in fingerlings of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Fish growth is strongly influenced by environmental and nutritional factors and changing culture conditions can help optimize it. The importance of early-life experience on the muscle phenotype later in life is well known. Here, we study the effects of 5 weeks of moderate and sustained swimming activity (5 BL s) in gilthead sea bream during early development. We analysed growth and body indexes, plasma IGF-I and GH levels, feed conversion, composition [proximate and isotopic (N/C)] and metabolic key enzymes (COX, CS, LDH, HOAD, HK, ALAT, ASAT) of white muscle. Moderate and continuous exercise in fingerlings of gilthead sea bream increased plasma IGF-I, whereas it reduced plasma GH. Under these conditions, growth rate improved without any modification to feed intake through an increase in muscle mass and a reduction in mesenteric fat deposits. There were no changes in the content and turnover of muscle proteins and lipid reserves. Glycogen stores were maintained, but glycogen turnover was higher in white muscle of exercised fish. A lower LDH/CS ratio demonstrated an improvement in the aerobic capacity of white muscle, while a reduction in the COX/CS ratio possibly indicated a functional adaptation of mitochondria to adjust to the tissue-specific energy demand and metabolic fuel availability in exercised fish. We discuss the synergistic effects of dietary nutrients and sustained exercise on the different mitochondrial responses.A.M.C and E.J.V. are supported by a predoctoral fellowship from the “Ministerio de Ciencia e Innovación” (MICINN) and A.M.P. by a fellowship from the University of Barcelona (APIF-2012). This study was supported by the projects from the MICINN AGL2012-39768, and the “Xarxa de Refèrencia d’R+D+I en Aqüicultura” and the SGR2009-00402 from the “Generalitat de Catalunya”.Peer Reviewe

    Growth-promoting effects of sustained swimming in fingerlings of glithead sea bream (Sparus aurata L.)

    Get PDF
    Fish growth is strongly influenced by environmental and nutritional factors and changing culture conditions can help optimize it. The importance of early-life experience on the muscle phenotype later in life is well known. Here, we study the effects of 5 weeks of moderate and sustained swimming activity (5 BL s−1) in gilthead sea bream during early development. We analysed growth and body indexes, plasma IGF-I and GH levels, feed conversion, composition [proximate and isotopic (15N/13C)] and metabolic key enzymes (COX, CS, LDH, HOAD, HK, ALAT, ASAT) of white muscle. Moderate and continuous exercise in fingerlings of gilthead sea bream increased plasma IGF-I, whereas it reduced plasma GH. Under these conditions, growth rate improved without any modification to feed intake through an increase in muscle mass and a reduction in mesenteric fat deposits. There were no changes in the content and turnover of muscle proteins and lipid reserves. Glycogen stores were maintained, but glycogen turnover was higher in white muscle of exercised fish. A lower LDH/CS ratio demonstrated an improvement in the aerobic capacity of white muscle, while a reduction in the COX/CS ratio possibly indicated a functional adaptation of mitochondria to adjust to the tissue-specific energy demand and metabolic fuel availability in exercised fish. We discuss the synergistic effects of dietary nutrients and sustained exercise on the different mitochondrial responses

    Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean)

    Get PDF
    A study on metal mobilisation (Zn, Pb and As) from contaminated sediments in Portman Bay (SE Spain) was carried out. Thisarea has suffered a major impact from mining activity, as millions of tons of mine tailings have been dumped into the bay over a long period, gradually filling the bay. A three-step sequential extraction procedure, modified from the BCR (Community Bureau of Reference) method, as well as selective extractions (H2O, 0.1 N HNO3, citrate–dithionite and 1 M NH4OAc after H2O2 attack) were applied to selected samples in order to evaluate the potential mobility of fixed metals. Acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) were also determined. X-ray diffraction (XRD) and scanning electron microscopy coupled to with an energy-dispersion spectrometry (SEM-EDS) were applied to the characterization of both raw samples and the residues remaining after each extraction, providing additional information about the sediment phases carrying the metals studied. Metals associated with sediments showed different behaviour depending on the mineralogical phase they were bound to. Zn was the most labile metal, while Pb and As showed a lower mobility. The fraction of metals associated with jarosites presented a high stability under different physicochemical conditions, while metals associated with mineralogical phases that are undergoing supergenic alteration processes presented a high mobility. The results obtained may be useful to assess both the short and the long-term environmental impact of such disposal activities as well as supporting decisions for a future remediation of the zone

    High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues

    Get PDF
    The feasibility of fish oil (FO) replacement by vegetable oils (VO) was investigated in gilthead sea bream (Sparus aurata L.) in a growth trial conducted for the duration of 8 months. Four isolipidic and isoproteic diets rich in plant proteins were supplemented with l-lysine (0ú55 %) and soya lecithin (1 %). Added oil was either FO (control) or a blend of VO, replacing 33 % (33VO diet), 66 % (66VO diet) and 100 % (VO diet) of FO. No detrimental effects on growth performance were found with the partial FO replacement, but feed intake and growth rates were reduced by about 10 % in fish fed the VO diet. The replacement strategy did not damage the intestinal epithelium, and massive accumulation of lipid droplets was not found within enterocytes. All fish showed fatty livers, but signs of lipoid liver disease were only found in fish fed the VO diet. Muscle fatty acid profiles of total lipids reflected the diet composition with a selective incorporation of unsaturated fatty acids in polar lipids. The robustness of the phospholipid fatty acid profile when essential fatty acid requirements were theoretically covered by the diet was evidenced by multivariate principal components analysis in fish fed control, 33VO and 66VO diets

    Genetic parameter estimations of new traits of morphological quality on gilthead seabream (Sparus aurata) by using IMAFISH_ML software

    Get PDF
    © 2021 The Authors.In this study, a total of 18 novel productive traits, three related to carcass [cNiT] and fifteen related to morphometric [mNiT]), were measured in gilthead seabream (Sparus aurata) using Non-invasive Technologies (NiT) as implemented in IMAFISH_ML (MatLab script). Their potential to be used in industrial breeding programs were evaluated in 2348 offspring reared under different production systems (estuarine ponds, oceanic cage, inland tank) at harvest. All animals were photographed, and digitally measured and main genetic parameters were estimated. Heritability for growth traits was medium (0.25–0.37) whereas for NiT traits medium-high (0.24–0.61). In general, genetic correlations between mNiT, cNiT and growth and traits were high and positive. Image analysis artifacts such as fin unfold or shades, that may interfere in the precision of some digital measurements, were discarded as a major bias factor since heritability of NiT traits after correcting them were no significantly different from original ones. Indirect selection of growth traits through NiT traits produced a better predicted response than directly measuring Body Weight (13–23%), demonstrating that this methodological approach is highly cost-effective in terms of accuracy and data processing time.This study was funded from the European Maritime and Fisheries Fund (EMFF) by Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAPAMA), framed in PROGENSA-II III project (Mejora de la Competitividad del Sector de la Dorada a Través de la Selección Genética, programa JACUMAR)

    Cysteamine improves growth and the GH/IGF axis in gilthead sea bream (Sparus aurata): in vivo and in vitro approaches

    Get PDF
    Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed

    Ghrelin and its receptors in Gglthead Sea bream: nutritional regulation

    Get PDF
    Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis

    Mitochondrial Adaptation to Diet and Swimming Activity in Gilthead Seabream: Improved Nutritional Efficiency

    Get PDF
    Sustained exercise promotes growth in different fish species, and in gilthead seabream we have demonstrated that it improves nutrient use efficiency. This study assesses for differences in growth rate, tissue composition and energy metabolism in gilthead seabream juveniles fed two diets: high-protein (HP; 54% protein, 15% lipid) or high energy (HE; 50% protein, 20% lipid), under voluntary swimming (VS) or moderate-to-low-intensity sustained swimming (SS) for 6 weeks. HE fed fish under VS conditions showed lower body weight and higher muscle lipid content than HP fed fish, but no differences between the two groups were observed under SS conditions. Irrespective of the swimming regime, the white muscle stable isotopes profile of the HE group revealed increased nitrogen and carbon turnovers. Nitrogen fractionation increased in the HP fed fish under SS, indicating enhanced dietary protein oxidation. Hepatic gene expression markers of energy metabolism and mitochondrial biogenesis showed clear differences between the two diets under VS: a significant shift in the COX/CS ratio, modifications in UCPs, and downregulation of PGC1a in the HE-fed fish. Swimming induced mitochondrial remodeling through upregulation of fusion and fission markers, and removing almost all the differences observed under VS. In the HE-fed fish, white skeletal muscle benefited from the increased energy demand, amending the oxidative uncoupling produced under the VS condition by an excess of lipids and the pro-fission state observed in mitochondria. Contrarily, red muscle revealed more tolerant to the energy content of the HE diet, even under VS conditions, with higher expression of oxidative enzymes (COX and CS) without any sign of mitochondrial stress or mitochondrial biogenesis induction. Furthermore, this tissue had enough plasticity to shift its metabolism under higher energy demand (SS), again equalizing the differences observed between diets under VS condition. Globally, the balance between dietary nutrients affects mitochondrial regulation due to their use as energy fuels, but exercise corrects imbalances allowing practical diets with lower protein and higher lipid content without detrimental effects

    Cimetidine disrupts the renewal of testicular cells and the steroidogenesis in a hermaphrodite fish

    Get PDF
    The importance of histamine in the physiology of the testis in mammals and reptiles has been recently shown. Histamine receptors (Hrs) are well conserved in fish and are functional in several fish species. We report here for the first time that histamine and the mRNA of Hrh1, Hrh2 and Hrh3 are all present in the gonad of the hermaphrodite teleost fish gilthead seabream. Moreover, cimetidine, which acts in vitro as an agonist of Hrh1 and Hrh2 on this species, was intraperitoneally injected in one and two years old gilthead seabream males. After three and five days of cimetidine injection, we found that this compound differently modified the gonadal hrs transcript levels and affects the testicular cell renewal and the gene expression of steroidogenesis-related molecules as well as the serum steroid levels. Our data point to cimetidine as a reproductive disruptor and elucidate a role for histamine in the gonad of this hermaphrodite fish species through Hr signalling.Postprint2,616
    corecore