20 research outputs found

    Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct

    Full text link
    [EN] Objective: To assemble a biohybrid cardiac patch consisting of a large (5x5 cm) elastomer scaffold whose pores are filled with a self-assembling peptide (SAP) gel entrapping adipose stem cells, to be used as a novel implant in a big animal model (sheep) of myocardial infarction. The study focuses on the way to determine optimal procedures for incorporating the SAP solution and the cells in the patch to ensure cell colonization and a homogeneous cell distribution in the construct before implantation. The problems associated with the scale-up of the different procedures raised by the large size of the construct are discussed. Materials and Methods: Experiments were performed to choose between different assembling alternatives: incorporation of the SAP gel before cell seeding or simultaneous SAP and cell loading of the scaffold; surface seeding of cells or cell injection into the scaffold pores; dissemination of the cells throughout the scaffold before incubation by gentle shaking or by centrifugation. Immunocytochemistry techniques and confocal and scanning electron microscopies were employed to assess and quantify cell colonization of the material and early cell distribution. Cell concentrations and the uniformity of cellular distribution throughout the scaffold were taken as the main criteria to decide between the different alternative procedures. Results: The combination of peptide preloading, cell injection, and shaking before incubation yielded the best results in terms of greater cell density and the most uniform distribution after 24 h of culture compared with the other methods. These techniques could be scaled-up to obtain large biohybrid cardiac patches with success. Conclusions: The results obtained after the different seeding methods allowed us to establish an effective protocol for the assembly of large biohybrid patches for their subsequent implantation in the heart of a big animal model of myocardial infarct in the context of a preclinical study.The authors acknowledge the financing from the European Commission through the ‘‘Regeneration of cardiac tissue assisted by bioactive implants’’ (RECATABI) FP7 NMP3-SL-2009-229239 project. MMP acknowledges support of Instituto de Salud Carlos III with assistance from the European Regional Development Fund through CIBER-BBN initiative.Martínez Ramos, C.; Rodríguez Pérez, E.; Perez Garnes, M.; Chachques, JC.; Moratal Pérez, D.; Vallés Lluch, A.; Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C Methods. 20(10):817-827. https://doi.org/10.1089/ten.TEC.2013.0489S817827201

    Regioirregular and catalytic Mizoroki-Heck reactions

    Full text link
    [EN] The palladium-catalysed cross-coupling reaction between alkenes and aryl halides (the Mizoroki-Heck reaction) is a powerful methodology to construct new carbon-carbon bonds. However, the success of this reaction is in part hampered by an extremely marked regioselectivity on the double bond, which dictates that electron-poor alkenes react exclusively on the beta-carbon. Here, we show that ligand-free, few-atom palladium clusters in solution catalyse the alpha-selective intramolecular Mizoroki-Heck coupling of iodoaryl cinnamates, and mechanistic studies support the formation of a sterically encumbered cinnamate-palladium cluster intermediate. Following this rationale, the alpha-selective intermolecular coupling of aryl iodides with styrenes is also achieved with palladium clusters encapsulated within fine-tuned and sterically restricted zeolite cavities to produce 1,1-bisarylethylenes, which are further engaged with aryl halides by a metal-free photoredox-catalysed coupling. These ligand-free methodologies significantly expand the chemical space of the Mizoroki-Heck coupling.This work was supported by MINECO (Spain, projects CTQ 2017-86735-P, PID2019-105391GB-C22 and MAT2017-82288-C2-1-P, Severo Ochoa programme SEV-2016-0683 and the Juan de la Cierva programme). F.G.-P. and R.G. thank ITQ for the concession of a contract. J.O.-M. acknowledges the Juan de la Cierva programme for the concession of a contract, and R.P.-R. and J.C.-S. thank the Plan GenT programme (CIDEGENT/2018/044) funded by Generalitat Valenciana. HR STEM measurements were performed at DME-UCA in Cadiz University, with financial support from FEDER/MINECO (PID2019-110018GA-I00 and PID2019-107578GA-I00). We acknowledge ALBA Synchrotron for allocating beamtime and CL AE SS beamline staff for their technical support during our experiment.Garnes-Portoles, F.; Greco, R.; Oliver-Meseguer, J.; Castellanos-Soriano, J.; Jiménez Molero, MC.; Lopez-Haro, M.; Hernández-Garrido, JC.... (2021). Regioirregular and catalytic Mizoroki-Heck reactions. Nature Catalysis. 4(4):293-303. https://doi.org/10.1038/s41929-021-00592-3S2933034

    Hexagonal Hybrid Bismuthene by Molecular Interface Engineering

    Get PDF
    High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of “electronic grade” structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion

    Interaction between acrylic substrates and RAD16-I peptide in its self-assembling

    Full text link
    [EN] Self-assembling peptides (SAP) are widely used as scaffolds themselves, and recently as fillers of microporous scaffolds, where the former provides a cell-friendly nanoenvironment and the latter improves its mechanical properties. The characterization of the interaction between these short peptides and the scaffold material is crucial to assess the potential of such a combined system. In this work, the interaction between poly(ethyl acrylate) (PEA) and 90/10 ethyl acrylate-acrylic acid copolymer P(EAcoAAc) with the SAP RAD16-I has been followed using a bidimensional simplified model. By means of the techniques of choice (congo red staining, atomic force microscopy (AFM), and contact angle measurements) the interaction and self-assembly of the peptide has proven to be very sensitive to the wettability and electro-negativity of the polymeric substrate.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministerio de Educacion through M. Arnal-Pastor FPU 2009-1870 grant. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Arnal Pastor, MP.; González-Mora, D.; García-Torres, F.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Interaction between acrylic substrates and RAD16-I peptide in its self-assembling. Journal of Polymer Research. 23(9):173-184. https://doi.org/10.1007/s10965-016-1069-3S173184239Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reac Func Polym 41:91–102Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420Zhang S, Zhao X, Spirio L, PuraMatrix (2005) Self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue Engineering. CRC Press, Boca Raton, FL, pp. 217–238Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 87(2):494–504Quintana L, Fernández Muiños T, Genove E, Del Mar Olmos M, Borrós S, Semino CE (2009) Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 15(1):45–54Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270Thonhoff JR, Lou DI, Jordan PM, Zhao X, Compatibility WP (2008) Of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening. Tissue engineering and cancer biology. AATEX 11(3):170–176McGrath AM, Novikova LN, Novikov LN, Wiberg MBD (2010) ™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: The effect ofintroduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res Part A 85:919–928Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29(2):161–171Vallés-Lluch A, Arnal-Pastor M, Martínez-Ramos C, Vilariño-Feltrer G, Vikingsson L, Castells-Sala C, Semino CE, Monleón Pradas M (2013) Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomater 9(12):9451–9460Valles-Lluch A, Arnal-Pastor M, Martinez-Ramos C, Vilarino-Feltrer G, Vikingsson L, Monleon Pradas M (2013) Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration. Conf Proc IEEE Eng Med Biol Soc 2013:6961–6964Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Monleón Pradas M, Semino CE, Bayes-Genis A (2014) Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res 6(3):291–301Martínez-Ramos M, Arnal-Pastor M, Vallés-Lluch A, Monleón Pradas M (2015) Peptide gel in a scaffold as a composite matrix for endothelial cells. J Biomed Mater Res Part A 103 A:3293–3302Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M (2010) Fibronectin activity on substrates with controlled -OH density. J Biomed Mater Res A 92(1):322–331Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL, Monleón Pradas M (2007) Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J 93(1):202–207Cantini M, Rico P, Moratal D, Salmerón-Sánchez M (2012) Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8:5575–5584Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H J Eng Med 224:1487–1507Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138Busscher HJ, Vanpelt AWJ, Deboer P, Dejong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331Birdi, KS. (1997) Surface tension of polymers. In: Yildrim Erbil H, ed. Handbook of surface and colloid chemistry CRC Press, Boca Raton, p. 292.Collier JH (2003) MessersmithPB.Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755Kakiuchi Y, Hirohashi N, Murakami-Murofushi K (2013) The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. BiochemBiophys Res Commun 433(3):298–304Pérez-Garnes M, González-García C, Moratal D, Rico P, Salmerón-Sánchez M (2011) Fibronectin distribution on demixednanoscale topographies. Int J Artif Organs 34(1):54–63Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ (2011) Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32(8):2099–2105Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, et al. (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14:152–162Keselowsky BG, Collard DM, García AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99Coelho NM, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G (2010) Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater 19:262–272Briz N, Antolinos-Turpin CM, Alió J, Garagorri N, Gómez Ribelles JL, Gómez-Tejedor JA (2013) Fibronectin fixation on poly(ethyl acrylate)-based copolymers. J Biomed Mater Res B Appl Biomater 101(6):991–997Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, Casas C, Guzmán M, Navarro X, Gómez Ribelles JL, García Verdugo JM, Monleón Pradas M, Barcia JA (2007) Influence of the substrate's hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A 83(2):463–470Van Krevelen, DW. (1997) Properties of polymers. Chapter 13 mechanical properties of solid polymers. Elsevier, pp. 367–43

    Proyecto de transformación de un antiguo molino de harina en museo mediante traslado de las instalaciones a un antiguo matadero en Pedralba (Valencia)

    Full text link
    Consulta en la Biblioteca ETSI Industriales (5690)[ES] El presente proyecto tiene como objeto la transformación de un antiguo molino de harina en museo, mediante traslado de las instalaciones al antiguo matadero de Pedralba, situado en la provincia de Valencia. ¿ En primer lugar se realizará un estudio general sobre el arte de la molinería, su historia, el oficio y el proceso de la molienda. Posteriormente se realiza un estudio descriptivo del sistema de funcionamiento y de las instalaciones del antiguo molino de Pedralba. ¿ En segundo lugar, se seleccionaran las diferentes partes de la maquinaria que se consideran adecuadas y de utilidad para su traslado al antiguo matadero del pueblo, con el fin de crear un museo en este lugar. ¿ Por último, se propondrá un diseño de este futuro museo, describiendo las posibles salas de las que pudiera constar, estudio de recorridos, lay-out, instalaciones eléctrica y de protección contra incendios, organización del museo y estudio económico del mismo.Pérez Garnes, A. (2006). Proyecto de transformación de un antiguo molino de harina en museo mediante traslado de las instalaciones a un antiguo matadero en Pedralba (Valencia). http://hdl.handle.net/10251/37274.Archivo delegad

    Cytostatic and Cytotoxic Effects of Hollow-Shell Mesoporous Silica Nanoparticles Containing Magnetic Iron Oxide

    No full text
    Among the different types of nanoparticles used in biomedical applications, Fe nanoparticles and mesoporous siliceous materials have been extensively investigated because of their possible theranostic applications. Here, we present hollow-shell mesoporous silica nanoparticles that encapsulate iron oxide and that are prepared using a drug-structure-directing agent concept (DSDA), composed of the model drug tryptophan modified by carbon aliphatic hydrocarbon chains. The modified tryptophan can behave as an organic template that allows directing the hollow-shell mesoporous silica framework, as a result of its micellisation and subsequent assembly of the silica around it. The one-pot synthesis procedure facilitates the incorporation of hydrophobically stabilised iron oxide nanoparticles into the hollow internal silica cavities, with the model drug tryptophan in the shell pores, thus enabling the incorporation of different functionalities into the all-in-one nanoparticles named mesoporous silica nanoparticles containing magnetic iron oxide (Fe3O4@MSNs). Additionally, the drug loading capability and the release of tryptophan from the silica nanoparticles were examined, as well as the cytostaticity and cytotoxicity of the Fe3O4@MSNs in different colon cancer cell lines. The results indicate that Fe3O4@MSNs have great potential for drug loading and drug delivery into specific target cells, thereby overcoming the limitations associated with conventional drug formulations, which are unable to selectively reach the sites of interest

    Fibronectin distribution on demixed nanoscale topographies

    No full text
    PURPOSE: It is known that surface nanotopography influences cell adhesion and differentiation. Our aim is to analyze the effect of nanoscale topography on fibronectin adsorption and, afterwards, on cell adhesion in order to rationalize the cell-material interaction by focusing on the state of the intermediate layer of adsorbed fibronectin at the material interphase. METHODS: Nanotopographic surfaces were produced by demixing of thin film polymer blends - PLLA and PS - during a high speed spin-casting process. Fibronectin (FN) was adsorbed on the different nanotopographies and the protein distribution was directly observed by atomic force microscopy (AFM). The fraction of the surface covered by the protein was quantified by image analysis, as well as the distribution of FN between peaks and valleys. Focal adhesion protein -vinculin- was immunostained and quantified by image analysis on the different nanoscale surfaces. RESULTS: Different nanoscale domains were obtained by changing the composition of the system within a height range of 3 nm to 30 nm. FN tends to adsorb on the peaks of nanoisland topographies, especially in compositions that did not enhance cell adhesion. Moreover, protein distribution between valleys and peaks alters the size of focal adhesion plaques, which grew larger on surfaces with an even distribution of fibronectin. CONCLUSIONS: Our results suggest that the surface nanotopography is a key material property capable of influencing protein adsorption. Additionally, the distribution of the protein on the different samples was correlated to the initial ability of cells to adhere in terms of the size of the focal plaques

    Fibronectin distribution on demixed nanoscale topographies

    Full text link
    [EN] Purpose: It is known that surface nanotopography influences cell adhesion and differentiation. Our aim is to analyze the effect of nanoscale topography on fibronectin adsorption and, afterwards, on cell adhesion in order to rationalize the cell-material interaction by focusing on the state of the intermediate layer of adsorbed fibronectin at the material interphase. Methods: Nanotopographic surfaces were produced by demixing of thin film polymer blends - PLLA and PS - during a high speed spin-casting process. Fibronectin (FN) was adsorbed on the different nanotopographies and the protein distribution was directly observed by atomic force microscopy (AFM). The fraction of the surface covered by the protein was quantified by image analysis, as well as the distribution of FN between peaks and valleys. Focal adhesion protein -vinculin- was immunostained and quantified by image analysis on the different nanoscale surfaces. Results: Different nanoscale domains were obtained by changing the composition of the system within a height range of 3 nm to 30 nm. FN tends to adsorb on the peaks of nanoisland topographies, especially in compositions that did not enhance cell adhesion. Moreover, protein distribution between valleys and peaks alters the size of focal adhesion plaques, which grew larger on surfaces with an even distribution of fibronectin. Conclusions: Our results suggest that the surface nanotopography is a key material property capable of influencing protein adsorption. Additionally, the distribution of the protein on the different samples was correlated to the initial ability of cells to adhere in terms of the size of the focal plaques. © 2011 Wichtig Editore.This studied was funded by the Spanish Ministry of Science and Innovation through MAT2009-14440-C02-01 and TEC2009-14128 grants. CIBER-BBN is an initiative funded by the VI National R&D&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement with the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III.Perez Garnes, M.; González García, C.; Moratal Pérez, D.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2011). Fibronectin distribution on demixed nanoscale topographies. International Journal of Artificial Organs. 34(1):54-63. https://doi.org/10.5301/ijao.2011.6316S546334

    Indomuscone-Based Sterically Encumbered Phosphines as Ligands for Palladium-Catalyzed Reactions

    No full text
    The fragrance compound indomuscone is used here as a scaffold to prepare two different sterically hindered phosphines, one aromatic and another alkylic, in good yields, after four synthetic steps. The new phosphines show enhanced electronic and steric properties when compared to benchmark commercial phosphine ligands, which is reflected in the catalytic results obtained for representative palladium-catalyzed reactions such as the telomerization reaction, the Buchwald-Hartwig and Suzuki cross-coupling reactions of chloroaromatic rings, and the semi-hydrogenation reaction of an alkyne. In particular, the indomuscone-based aromatic phosphine ligand leads to the highest selectivity for the tail-to-head telomerization product between isoprene and methanol, while the indomuscone-based alkylic phosphine ligand shows extraordinary similarities with the Buchwald-type SPhos phosphine ligand.This work is part of the project PID2020-115100GB-I00 funded by MCIN/AEI/10.13039/501100011033MICIIN. Financial support by Severo Ochoa Centre of Excellence program (CEX2021-001230-S) is gratefully acknowledged. We thank Generalitat Valenciana for the concession of a project (UCIE-ITQ 2022). We truly thank IFF for the continuous support. F.G.-P. thanks ITQ for a contract. S.S.-N. thanks a fellowship from MINECO (project number CTQ 2017-86735-P). J.B.-S. thanks the “La Caixa” Foundation grant (ID 100010434), code LCF/BQ/DI19/11730029. We thank the UPV Service of Microscopy for the support
    corecore