89 research outputs found
Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization.
Acquisition of mitochondria by the ancestor of all living eukaryotes represented a crucial milestone in the evolution of the eukaryotic cell. Nevertheless, a number of anaerobic unicellular eukaryotes have secondarily discarded certain mitochondrial features, leading to modified organelles such as hydrogenosomes and mitosomes via degenerative evolution. These mitochondrion-derived organelles have lost many of the typical characteristics of aerobic mitochondria, including certain metabolic pathways, morphological traits, and, in most cases, the organellar genome. So far, the evolutionary pathway leading from aerobic mitochondria to anaerobic degenerate organelles has remained unclear due to the lack of examples representing intermediate stages. The human parasitic stramenopile Blastocystis is a rare example of an anaerobic eukaryote with organelles that have retained some mitochondrial characteristics, including a genome, whereas they lack others, such as cytochromes. Here we report the sequence and comparative analysis of the organellar genome from two different Blastocystis isolates as well as a comparison to other genomes from stramenopile mitochondria. Analysis of the characteristics displayed by the unique Blastocystis organelle genome gives us an insight into the initial evolutionary steps that may have led from mitochondria to hydrogenosomes and mitosomes
Comparative analysis of two genomic regions among four strains of Buchnera aphidicola, primary endosymbiont of aphids.
Preliminary analysis of two selected genomic regions of Buchnera aphidicola BCc, the primary endosymbiont of the cedar aphid Cinara cedri, has revealed a number of interesting features when compared with the corresponding homologous regions of the three B. aphidicola genomes previously sequenced, that are associated with different aphid species. Both regions exhibit a significant reduction in length and gene number in B. aphidicola BCc, as it could be expected since it possess the smallest bacterial genome. However, the observed genome reduction is not even in both regions, as it appears to be dependent on the nature of their gene content. The region fpr-trxA, that contains mainly metabolic genes, has lost almost half of its genes (45.6%) and has reduced 52.9% its length. The reductive process in the region rrl-aroK, that contains mainly ribosomal protein genes, is less dramatic, since it has lost 9.3% of genes and has reduced 15.5% of its length. Length reduction is mainly due to the loss of protein-coding genes, not to the shortening of ORFs or intergenic regions. In both regions, G+C content is about 4% lower in BCc than in the other B. aphidicola strains. However, when only conserved genes and intergenic regions of the four B. aphidicola strains are compared, the G+C reduction is higher in the fpr-trxA region
A Linear Molecule with Two Large Inverted Repeats: The Mitochondrial Genome of the Stramenopile Proteromonas lacertae
Mitochondrial evolution has given rise to a complex array of organelles, ranging from classical aerobic mitochondria to mitochondrial remnants known as hydrogenosomes and mitosomes. The latter are found in anaerobic eukaryotes, and these highly derived organelles often retain only scant evidence of their mitochondrial origins. Intermediate evolutionary stages have also been reported as facultatively or even strictly anaerobic mitochondria, and hydrogenosomes that still retain some mitochondrial features. However, the diversity among these organelles with transitional features remains rather unclear and barely studied. Here, we report the sequence, structure, and gene content of the mitochondrial DNA of the anaerobic stramenopile Proteromonas lacertae. It has a linear genome with a unique central region flanked by two identical large inverted repeats containing numerous genes and “telomeres” with short inverted repeats. Comparison with the organelle genome of the strictly anaerobic human parasite Blastocystis reveals that, despite the close similarity of the sequences, features such as the genome structure display striking differences. It remains unclear whether the virtually identical gene repertoires are the result of convergence or descent
New Insights on the Evolutionary History of Aphids and Their Primary Endosymbiont Buchnera aphidicola
Since the establishment of the symbiosis between the ancestor of modern aphids and their primary endosymbiont, Buchnera aphidicola, insects and bacteria have coevolved. Due to this parallel evolution, the analysis of bacterial genomic features constitutes a useful tool to understand their evolutionary history. Here we report, based on data from B. aphidicola, the molecular evolutionary analysis, the phylogenetic relationships among lineages and a comparison of sequence evolutionary rates of symbionts of four aphid species from three subfamilies. Our results support previous hypotheses of divergence of B. aphidicola and their host lineages during the early Cretaceous and indicate a closer relationship between subfamilies Eriosomatinae and Lachninae than with the Aphidinae. They also reveal a general evolutionary pattern among strains at the functional level. We also point out the effect of lifecycle and generation time as a possible explanation for the accelerated rate in B. aphidicola from the Lachninae
Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri.
Intracellular symbiosis is very common in the insect world. For the aphid Cinara cedri, we have identified by electron microscopy three symbiotic bacteria that can be characterized by their different sizes, morphologies, and electrodensities. PCR amplification and sequencing of the 16S ribosomal DNA (rDNA) genes showed that, in addition to harboring Buchnera aphidicola, the primary endosymbiont of aphids, C. cedri harbors a secondary symbiont (S symbiont) that was previously found to be associated with aphids (PASS, or R type) and an alpha-proteobacterium that belongs to the Wolbachia genus. Using in situ hybridization with specific bacterial probes designed for symbiont 16S rDNA sequences, we have shown that Wolbachia was represented by only a few minute bacteria surrounding the S symbionts. Moreover, the observed B. aphidicola and the S symbionts had similar sizes and were housed in separate specific bacterial cells, the bacteriocytes. Interestingly, in contrast to the case for all aphids examined thus far, the S symbionts were shown to occupy a similarly sized or even larger bacteriocyte space than B. aphidicola. These findings, along with the facts that C. cedri harbors the B. aphidicola strain with the smallest bacterial genome and that the S symbionts infect all Cinara spp. analyzed so far, suggest the possibility of bacterial replacement in these species
Comparison of Experimental Methodologies Based on Bulk-Metagenome and Virus-like Particle Enrichment: Pros and Cons for Representativeness and Reproducibility in the Study of the Fecal Human Virome
Metagenomics; Sequencing; ViromeMetagenómica; Secuenciación; ViromaMetagenòmica; Seqüenciació; ViromaStudies on the human virome based on the application of metagenomic approaches involve overcoming a series of challenges and limitations inherent not only to the biological features of viruses, but also to methodological pitfalls which different approaches have tried to minimize. These approaches fall into two main categories: bulk-metagenomes and virus-like particle (VLP) enrichment. In order to address issues associated with commonly used experimental procedures to assess the degree of reliability, representativeness, and reproducibility, we designed a comparative analysis applied to three experimental protocols, one based on bulk-metagenomes and two based on VLP enrichment. These protocols were applied to stool samples from 10 adult participants, including two replicas per protocol and subject. We evaluated the performances of the three methods, not only through the analysis of the resulting composition, abundance, and diversity of the virome via taxonomical classification and type of molecule (DNA versus RNA, single stranded vs. double stranded), but also according to how the a priori identical replicas differed from each other according to the extraction methods used. Our results highlight the strengths and weaknesses of each approach, offering valuable insights and tailored recommendations for drawing reliable conclusions based on specific research goals.This research was funded by Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, grant number CDEI-06/20-E, awarded to V.P.B., as well as by the Asociación Española contra el Cáncer (AECC), project AECC 2017-1485, and the project CIPROM/2021/042 from the Generalitat Valenciana, both awarded to A.M
The respiratory microbiome in bronchial mucosa and secretions from severe IgE-mediated asthma patients
Altres ajuts: This work was supported by Fundació Catalana de Neumología (FUCAP) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias(CIBERES). CIBERES is an initiative of the Instituto de Salud Carlos III.The bronchial microbiome in chronic lung diseases presents an abnormal pattern, but its microbial composition and regional differences in severe asthma have not been sufficiently addressed. The aim of the study was to describe the bacterial community in bronchial mucosa and secretions of patients with severe chronic asthma chronically treated with corticosteroids in addition to usual care according to Global Initiative for Asthma. Bacterial community composition was obtained by 16S rRNA gene amplification and sequencing, and functional capabilities through PICRUSt. Thirteen patients with severe asthma were included and provided 11 bronchial biopsies (BB) and 12 bronchial aspirates (BA) suitable for sequence analyses. Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria showed relative abundances (RAs) over 5% in BB, a cutoff that was reached by Streptococcus and Prevotella at genus level. Legionella genus attained a median RA of 2.7 (interquartile range 1.1-4.7) in BB samples. In BA a higher RA of Fusobacteria was found, when compared with BB [8.7 (5.9-11.4) vs 4.2 (0.8-7.5), p = 0.037], while the RA of Proteobacteria was lower in BA [4.3 (3.7-6.5) vs 17.1 (11.2-33.4), p = 0.005]. RA of the Legionella genus was also significantly lower in BA [0.004 (0.001-0.02) vs. 2.7 (1.1-4.7), p = 0.005]. Beta-diversity analysis confirmed the differences between the microbial communities in BA and BB (R 2 = 0.20, p = 0.001, Adonis test), and functional analysis revealed also statistically significant differences between both types of sample on Metabolism, Cellular processes, Human diseases, Organismal systems and Genetic information processing pathways. The microbiota in the bronchial mucosa of severe asthma has a specific pattern that is not accurately represented in bronchial secretions, which must be considered a different niche of bacteria growth. The online version of this article (doi:10.1186/s12866-017-0933-6) contains supplementary material, which is available to authorized users
Identification of the Weevil immune genes and their expression in the bacteriome tissue
<p>Abstract</p> <p>Background</p> <p>Persistent infections with mutualistic intracellular bacteria (endosymbionts) are well represented in insects and are considered to be a driving force in evolution. However, while pathogenic relationships have been well studied over the last decades very little is known about the recognition of the endosymbionts by the host immune system and the mechanism that limits their infection to the bacteria-bearing host tissue (the bacteriome).</p> <p>Results</p> <p>To study bacteriome immune specificity, we first identified immune-relevant genes of the weevil <it>Sitophilus zeamais </it>by using suppressive subtractive hybridization (SSH) and then analyzed their full-length coding sequences obtained by RACE-PCR experiments. We then measured immune gene expression in the bacteriome, and in the aposymbiotic larvae following <it>S. zeamais </it>primary endosymbiont (SZPE) injection into the hemolymph, in order to consider the questions of bacteriome immune specificity and the insect humoral response to symbionts. We show that larval challenge with the endosymbiont results in a significant induction of antibacterial peptide genes, providing evidence that, outside the bacteriome, SZPE are recognized as microbial intruders by the host. In the bacteriome, gene expression analysis shows the overexpression of one antibacterial peptide from the <it>coleoptericin </it>family and, intriguingly, homologs to genes described as immune modulators (that is, <it>PGRP-LB, Tollip</it>) were also shown to be highly expressed in the bacteriome.</p> <p>Conclusion</p> <p>The current data provide the first description of immune gene expression in the insect bacteriome. Compared with the insect humoral response to SZPE, the bacteriome expresses few genes among those investigated in this work. This local immune gene expression may help to maintain the endosymbiont in the bacteriome and prevent its invasion into insect tissues. Further investigations of the <it>coleoptericin</it>, the <it>PGRP </it>and the <it>Tollip </it>genes should elucidate the role of the host immune system in the maintenance and regulation of endosymbiosis.</p
A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations
Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system
Functional Metagenomics of the Bronchial Microbiome in COPD
Altres ajuts: Sociedad Catalana de Neumología; Fundació Catalana de Neumología; Fundació Parc Tauli; Marató de TV3; Sociedad Española de Neumología y Cirugía Torácica; Fundación Menarini; Generalitat Valenciana (Spain) [Prometeo/2009/092] i Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)The course of chronic obstructive pulmonary disease (COPD) is frequently aggravated by exacerbations, and changes in the composition and activity of the microbiome may be implicated in their appearance. The aim of this study was to analyse the composition and the gene content of the microbial community in bronchial secretions of COPD patients in both stability and exacerbation. Taxonomic data were obtained by 16S rRNA gene amplification and pyrosequencing, and metabolic information through shotgun metagenomics, using the Metagenomics RAST server (MG-RAST), and the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) programme, which predict metagenomes from 16S data. Eight severe COPD patients provided good quality sputum samples, and no significant differences in the relative abundance of any phyla and genera were found between stability and exacerbation. Bacterial biodiversity (Chao1 and Shannon indexes) did not show statistical differences and beta-diversity analysis (Bray-Curtis dissimilarity index) showed a similar microbial composition in the two clinical situations. Four functional categories showed statistically significant differences with MG-RAST at KEGG level 2: in exacerbation, Cell growth and Death and Transport and Catabolism decreased in abundance [1.6 (0.2-2.3) vs 3.6 (3.3-6.9), p = 0.012; and 1.8 (0-3.3) vs 3.6 (1.8-5.1), p = 0.025 respectively], while Cancer and Carbohydrate Metabolism increased [0.8 (0-1.5) vs 0 (0-0.5), p = 0.043; and 7 (6.4-9) vs 5.9 (6.3-6.1), p = 0.012 respectively]. In conclusion, the bronchial microbiome as a whole is not significantly modified when exacerbation symptoms appear in severe COPD patients, but its functional metabolic capabilities show significant changes in several pathways
- …