64 research outputs found

    Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study

    Get PDF
    [EN]Litter decomposition is an ecological process of key importance for forest headwater stream functioning, with repercussions for the global carbon cycle. The process is directly and indirectly mediated by microbial decomposers, mostly aquatic hyphomycetes, and influenced by environmental and biological factors such as water temperature and litter quality. These two factors are forecasted to change globally within the next few decades, in ways that may have contrasting effects on microbial-induced litter decomposition: while warming is expected to enhance microbial performance, the reduction in litter quality due to increased atmospheric carbon dioxide and community composition alteration may have the opposite outcome. We explored this issue through a microcosm experiment focused on early microbial-mediated litter decomposition under stream oligotrophic conditions, by simultaneously manipulating water temperature (10 degrees C and 15 degrees C) and litter quality (12 broadleaf plant species classified into 4 categories based on initial concentrations of nitrogen and tannins). We assessed potential changes in microbial-mediated litter decomposition and the performance of fungal decomposers (i.e., microbial respiration, biomass accrual, and sporulation rate) and species richness. We found stronger effects of litter quality, which enhanced the performance of microbial decomposers and decomposition rates, than temperature, which barely influenced any of the studied variables. Our results suggest that poorer litter quality associated with global change will have a major repercussion on stream ecosystem functioning.This study was financed by the Portuguese Foundation for Science and Technology (FCT), through the strategic projects UIDP/04292/2020 granted to MARE and start-up funds from the Donana Biological Station (EBD-CSIC) and Ikerbasque to LB. Financial support granted by the FCT to VF (IF/00129/2014, CEECIND/02484/2018) is also acknowledged. Special thanks to A. LandeiraDabarca and C. Grela-Docal for their assistance in field and laboratory work and to L. Barmuta, J. Chara, C. Colon-Gaud, M.O. Gessner, J.F. Goncalves Jr., B. McKie, R. Pearson, C. Swan, and C. Yule, among others, collaborators from GLoBE network, for collecting the plant litter

    Free and esterified carotenoids in ornaments of an avian species: the relationship to color expression and sources of variability

    Get PDF
    Many animal species show ornaments with yellow-orange-red colors produced by carotenoid pigments. Such traits have evolved as reliable signals of individual quality because of the costs inherent to their production or maintenance. In animal tissues, carotenoids are often found combined with free fatty acids, as carotenoid esters, which may confer more stability to coloration than free carotenoids. Surprisingly, the potential relevance of carotenoid esterification in the expression of animal sexual signals has been virtually ignored. Moreover, the sources of variability of esterified carotenoid levels are barely known, because most studies have not quantified their concentrations. Here, carotenoids in the ornaments (bill, eye rings, and legs) of red-legged partridges Alectoris rufa were quantified in their free and esterified forms. Carotenoid ester levels were the best predictors of leg color, whereas the redness of the other traits was better explained by free carotenoids. Nonetheless, total carotenoid levels (the sum of free and esterified forms) were always significantly correlated to redness. Young partridges had lower levels of free and esterified carotenids in the legs than did older individuals. Also, wild animals had higher ester levels and a higher proportion of carotenoids in esterified forms in all traits than did captive partridges. Probable physiological mechanisms explaining these patterns are discussed.Esther García-de Blas was supported by a predoctoral grant (JAE-PRE program) from the Consejo Superior de Investigaciones Científicas cofinanced by Fondo Socia Europeo. Lorenzo Pérez-Rodríguez was supported by a “Juan de la Cierva” postdoctoral contract from the Spanish Ministerio de Ciencia e Innovación (JCI-2008-2059). This study was funded by Consejería de Educación y Ciencia, Junta de Comunidades de Castilla la Mancha (PII1I09-0271-5037), and Ministerio de Economía y Competitividad (CGL2009-10883-C02-02) from the Spanish government.Peer reviewe

    Amphibian loss alters periphyton structure and invertebrate growth in montane streams

    Get PDF
    Amphibians are declining worldwide due to a combination of stressors such as climate change, invasive species, habitat loss, pollution and emergent diseases. Although their losses are likely to have important ecological consequences on the structure and functioning of freshwater ecosystems, this issue has been scarcely explored. We conducted an experiment in three montane streams-where primary production is the main source of energy and carbon-to assess the effects of amphibian disappearance (i.e. presence or absence of the common midwife toad Alytes obstetricans, a common species found in pools of these streams) on several aspects of ecosystem functioning and structure: periphyton biomass and chlorophyll a concentration, algal assemblage structure, and growth of macroinvertebrate grazers. We compared four types of experimental enclosures: (i) without macroinvertebrates or amphibians; (ii) with larvae of the caddisfly Allogamus laureatus; (iii) with A. obstetricans tadpoles; and (iv) with both A. laureatus larvae and A. obstetricans tadpoles. The absence of tadpoles increased periphyton biomass, but did not cause differences on inorganic sediment accrual. The algal assemblage had a higher diversity in the absence of tadpoles, and their characteristic taxa differed from the assemblages in presence of tadpoles. A. laureatus presented higher mass in presence of tadpoles; however, tadpole length was not affected by presence of macroinvertebrates. Our results suggest that presence of tadpoles is a driver of periphyton accrual and assemblage structure, acting as top-down control and with key potential consequences on the functioning of montane stream ecosystems.This study was funded by the Spanish Ministry for Science, Innovation and Universities and FEDER (BioLoss project, Ref. RTI2018-095023-B-I00 to L.B.) and the Basque Government (Ref. IT951-16 to the Stream Ecology Group at the UPV/EHU). A.A. was supported by UPV/EHU predoctoral fellowships

    Litter Decomposition can be Reduced by Pesticide Effects on Detritivores and Decomposers: Implications for Tropical Stream Functioning

    Get PDF
    Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.This work was supported by the National Secretariat for Science, Technology and Innovation (SENACYT; project APY-GC-2018B-052; contract no. 259e2018) and the Ministry of Economy and Finance of Panama (MEF; project 019910.001). AC was supported by a fellowship from SENACYT (contract no. 001e2015) and by the National Research System of Panama (SNI; PhD category; contract no. 186e2018). GC was supported by a fellowship from IFARHU- SENACYT (contract no. 270-2018-1011

    A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies

    Get PDF
    Fungicides can reach streams through runoff or adhered to leaf litter, and have the potential to adversely affect processes such as litter decomposition and associated communities. This study investigated the effects of chlorothalonil, a widely used fungicide, on litter decomposition, detritivorous invertebrates (larvae of the insect Sericostoma pyrenaicum) and aquatic hyphomycetes (AHs), using stream microcosms. We considered the single and combined effects of two exposure modes: waterborne fungicide (at two concentrations: 0.125 mu g L-1 and 1.25 mu g L-1) and litter previously sprayed with the fungicide (i.e., pre-treated litter, using the application dose concentration of 1250 mu g L-1). We also assessed whether fungicide effects on invertebrates, AHs and decomposition varied among litter types (i.e., different plant species), and whether plant diversity mitigated any of those effects. Invertebrate survival and AH sporulation rate and taxon richness were strongly reduced by most combinations of fungicide exposure modes; however, invertebrates were not affected by the low waterborne concentration, whereas AHs suffered the highest reduction at this concentration. Total decomposition was slowed down by both exposure modes, and microbial decomposition was reduced by litter pre-treatment, while the waterborne fungicide had different effects depending on plant species. In general, with the exception of microbial decomposition, responses varied little among litter types. Moreover, and contrary to our expectation, plant diversity did not modulate the fungicide effects. Our results highlight the severity of fungicide inputs to streams through effects on invertebrate and microbial communities and ecosystem functioning, even in streams with well-preserved, diverse riparian vegetation.We thank Richard Pearson and two anonymous reviewers for their comments on the manuscript. This study was derived from AC's PhD thesis and AA's MSc thesis. AC was supported by a fellowship of the National Secretariat of Science, Technology and Innovation (SENACYT) and the National Research System of Panama (SNI). SM was supported by a postdoctoral grant from the University of the Basque Country. Additional funding was obtained from the Spanish Ministry for Science, Innovation and Universities and FEDER (project BioLoss, RTI2018095023-B-I00) and Basque Government funds (IT951-16)

    Extreme temperature events alter stream ecosystem functioning

    Get PDF
    Extreme temperature events have increased in intensity, duration and frequency in the last century, with potential consequences on organisms and ecosystems. In many streams, leaf litter of terrestrial origin is a key resource for microorganisms and some detritivores, and its decomposition has a main role on ecosystem functioning and is often used as an indicator of ecological integrity. As litter is often exposed to atmospheric conditions before entering the stream, extreme warming and freezing events may alter its physicochemical structure and affect decomposition and associated detritivores. We tested this prediction in a microcosm experiment by exposing litter of three tree species (in single-species treatments and the 3-species mixture) to different temperature pre-treatments: heating (40 degrees C), freezing ( - 20 degrees C) and both (heating followed by freezing). We then examined changes in litter traits due to leaching (72 h), litter decomposition in the absence and presence of detritivores, and detritivore growth (28 d), with focus on mass and nutrient (nitrogen and phosphorus) changes. Nutrient leaching was promoted mostly by the heating pre-treatment, which apparently produced lower-quality litter. However, microbial activity mostly resulted in litter mass and nutrient gain, which were reinforced by the heating pre-treatment, while freezing had the opposite effect. When detritivores were present, decomposition showed high variation among litter types but, again, the heating and freezing pre-treatments tended to reduce and enhance nutrient loss, respectively. The greatest and more consistent effects occurred for detritivore growth, which was reduced by temperature pre-treatments, particularly in the highest-quality litter type. In general, the sequential application of heating and freezing pre-treatments showed no synergistic effect, and the litter mixture showed similar responses to single-species treatments. Our results demonstrate that short-term extreme temperatures can modify litter quality in riparian soils and have subsequent effects on its decomposition within the stream and associated fauna, potentially altering stream food webs, ecosystem functioning and biogeochemical cycles.This study was funded by the Spanish Ministry for Science, Innovation and Universities and FEDER (project BioLoss, Ref. RTI2018-095023-B400), Basque Goverment funds (Ref. IT951-16) and Initiation Fondecyt Project (Ref. 11170390). I. Diaz and U. Apodaka-Etxebarria contributed to the sample processing

    No evidence of biodiversity effects on stream ecosystem functioning across green and brown food web pathways

    Get PDF
    [EN] Biodiversity loss is known to affect the two fundamental and opposite processes controlling carbon and nutrient cycles globally, that is, primary production and decomposition, which are driven by green and brown food web compartments, respectively. However, biodiversity in these two food web compartments has been mostly studied independently, and potential reciprocal effects of biodiversity loss on ecosystem processes remain unclear. We conducted a 35-day stream mesocosm experiment with two levels of algal diversity (natural and diluted periphyton communities) and three levels of litter diversity (no litter, monocultures of poplar, maple, and oak, and the three-spp. mixture) to simulate changes in biodiversity in both the green and brown pathways of an aquatic food web. We then measured multiple ecosystem processes pertaining to carbon cycling. We predicted that algal diversity would enhance decomposition and sporulation of fungal decomposers, while litter diversity would enhance algal growth and net primary production, due to the more diverse algal exudates or litter nutrients being released from more diverse mixtures. In contrast to this hypothesis, we only found biodiversity effects on an ecosystem process within the green pathway: there was a relationship between algal diversity and biofilm carrying capacity. Nevertheless, we found that this relationship was affected by the presence or absence of litter (algal diversity increased the carrying capacity in presence of litter and decreased it in its absence), which also influenced the algal community structure. Our mesocosm experiment did not evidence relationships between biodiversity and ecosystem processes across different food web compartments, but further studies in more realistic conditions would be necessary to confirm this result. If supported, the lack of biodiversity-ecosystem functioning relationships across compartments would facilitate the prediction of the impacts of biodiversity loss on ecosystems.Spanish Ministry for Science, Innovation and Universities and FEDER; U.S. National Science Foundation, Grant/Award Number: 133234

    Key plant species and detritivores drive diversity effects on instream leaf litter decomposition more than functional diversity: A microcosm study

    Get PDF
    Anthropogenic impacts on freshwater ecosystems cause critical losses of biodiversity that can in turn impair key processes such as decomposition and nutrient cycling. Forest streams are mainly subsidized by terrestrial organic detritus, so their functioning and conservation status can be altered by changes in forest biodiversity and composition, particularly if these changes involve the replacement of functional groups or the loss of key species. We examined this issue using a microcosm experiment where we manipulated plant functional diversity (FD) (monocultures and low-FD and high-FD mixtures, resulting from different combinations of deciduous and evergreen Quercus species) and the presence of a key species (Alnus glutinosa), all in presence and absence of detritivores, and assessed effects on litter decomposition, nutrient cycling, and fungal and detritivore biomass. We found (i) positive diversity effects on detritivore-mediated decomposition, litter nutrient losses and detritivore biomass exclusively when A. glutinosa was present; and (ii) negative effects on the same processes when microbially mediated and on fungal biomass. Most positive trends could be explained by the higher litter palatability and litter trait variability obtained with the inclusion of alder leaves in the mixture. Our results support the hypothesis of a consistent slowing down of the decomposition process as a result of plant biodiversity loss, and hence effects on stream ecosystem functioning, especially when a key (N-fixing) species is lost; and underscore the importance of detritivores as drivers of plant diversity effects in the studied ecosystem processes.This study was funded by the 2014–2020 FEDER Operative Program Andalusia (RIOVEGEST project, Ref. FEDER-UAL18 -RNM -B006 – B, to J.J.C). Additional support was provided by the Spanish Ministry for Science, Innovation and Universities and FEDER (BioLoss project, Ref. RTI2018-095023- B-I00, to L.B.). Rubio-Ríos was supported by an FPU grant of the Spanish Ministry of Education, Culture and Sports (reference FPU16/03734)

    Leaf Traits Drive Plant Diversity Effects On Litter Decomposition And FPOM Production In Streams

    Get PDF
    Biodiversity loss in riparian forests has the potential to alter rates of leaf litter decomposition in stream ecosystems. However, studies have reported the full range of positive, negative and no effects of plant diversity loss on decomposition, and there is currently no explanation for such inconsistent results. Furthermore, it is uncertain whether plant diversity loss affects other ecological processes related to decomposition, such as fine particulate organic matter production or detritivore growth, which precludes a thorough understanding of how detrital stream food webs are impacted by plant diversity loss. We used a microcosm experiment to examine the effects of plant diversity loss on litter decomposition, fine particulate organic matter production, and growth of a dominant leaf-shredding detritivore, using litter mixtures varying in species composition. We hypothesized that plant diversity loss would decrease the rates of all studied processes, but such effects would depend on the leaf traits present in litter mixtures (both their average values and their variability). Our findings partly supported our hypotheses, showing that plant diversity loss had a consistently negative effect on litter decomposition and fine particulate organic matter production (but not on detritivore growth) across litter mixtures, which was mediated by detritivores. Importantly, the magnitude of the diversity effect and the relative importance of different mechanisms underlying this effect (i.e., complementarity vs. selection) varied depending on the species composition of litter mixtures, mainly because of differences in litter nutritional quality and trait variability. Complementarity was prevalent but varied in size, with positive selection effects also occurring in some mixtures. Our results support the notion that loss of riparian plant species is detrimental to key stream ecosystem processes that drive detrital food webs, but that the magnitude of such effects largely depends on the the order of species loss.This study was funded by the ‘BIOFUNCTION’ project (CGL2014-52779-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER to LB and JPo, Basque Government funds (IT302-16) to JPo, and Ikerbasque start-up funds to LB. NLR and AM were supported by a predoctoral fellowship from the Basque Government and a postdoctoral contract from the University of the Basque Country, respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore