29 research outputs found

    Driving rate effects in avalanche-mediated, first-order phase transitions

    Get PDF
    We have studied the driving rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behaviour emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We have confirmed our findings by numerical simulations of a prototype model.Comment: 4 pages, 3 figure

    Training-induced criticality in martensites

    Full text link
    We propose an explanation for the self-organization towards criticality observed in martensites during the cyclic process known as `training'. The scale-free behavior originates from the interplay between the reversible phase transformation and the concurrent activity of lattice defects. The basis of the model is a continuous dynamical system on a rugged energy landscape, which in the quasi-static limit reduces to a sandpile automaton. We reproduce all the principal observations in thermally driven martensites, including power-law statistics, hysteresis shakedown, asymmetric signal shapes, and correlated disorder.Comment: 5 pages, 4 figure

    Acoustic emission across the magnetostructural transition of the giant magnetocaloric Gd5Si2Ge2 compound

    Get PDF
    We report on the existence of acoustic emission during the paramagnetic-monoclinic to ferromagnetic-orthorhombic magnetostructural phase transition in the giant magnetocaloric Gd5Si2Ge2 compound. The transition kinetics have been analyzed from the detected acoustic signals. It is shown that this transition proceeds by avalanches between metastable states.Comment: 5 pages, 4 figure

    Driving-induced crossover: from classical criticality to self-organized criticality

    Get PDF
    We propose a spin model with quenched disorder which exhibits in slow driving two drastically different types of critical nonequilibrium steady states. One of them corresponds to classical criticality requiring fine-tuning of the disorder. The other is a self-organized criticality which is insensitive to disorder. The crossover between the two types of criticality is determined by the mode of driving. As one moves from "soft" to "hard" driving the universality class of the critical point changes from a classical order-disorder to a quenched Edwards-Wilkinson universality class. The model is viewed as prototypical for a broad class of physical phenomena ranging from magnetism to earthquakes.Comment: 4 pages, 4 figure

    Quality More Than Quantity: The Use of Carbohydrates in High-Fat Diets to Tackle Obesity in Growing Rats

    Get PDF
    This research was supported by funds provided by the Abbott Laboratories S.A.Childhood obesity prevention is important to avoid obesity and its comorbidities into adulthood. Although the energy density of food has been considered a main obesogenic factor, a focus on food quality rather that the quantity of the different macronutrients is needed. Therefore, this study investigates the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on metabolic abnormalities and its impact on obesity in growing rats fed a high-fat diet (HFD). Growing rats were fed on HFD containing carbohydrates with different digestion rates: a HFD containing rapid-digesting carbohydrates (OBE group) or slow-digesting carbohydrates (ISR group), for 4 weeks and the effect on the metabolism and signaling pathways were analyzed in different tissues. Animals from OBE group presented an overweight/obese phenotype with a higher body weight gain and greater accumulation of fat in adipose tissue and liver. This state was associated with an increase of HOMA index, serum diacylglycerols and triacylglycerides, insulin, leptin, and pro-inflammatory cytokines. In contrast, the change of carbohydrate profile in the diet to one based on slow digestible prevented the obesity-related adverse effects. In adipose tissue, GLUT4 was increased and UCPs and PPARg were decreased in ISR group respect to OBE group. In liver, GLUT2, FAS, and SRBP1 were lower in ISR group than OBE group. In muscle, an increase of glycogen, GLUT4, AMPK, and Akt were observed in comparison to OBE group. In conclusion, this study demonstrates that the replacement of rapidly digestible carbohydrates for slowly digestible carbohydrates within a highfat diet promoted a protective effect against the development of obesity and its associated comorbidities.Abbott Laboratories S.A

    Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals

    Get PDF
    This work was supported by grants CTQ2014-55474-C2-1-R, CTQ2014-55474-C2-2-R and CTQ2017-86125-P from the Ministerio Economia, Industria y Competitividad (co-financed by FEDER funds). SP is supported by a FPU fellowship (FPU17/ 04749). We acknowledge the University of Granada (Spain) cell culture, animal and microscopy central facilities (CIC-UGR).The use of the specific binding properties of monoclonal antibody fragments such as single-chain variable fragments (ScFv) for the selective delivery of antitumor therapeutics for cancer cells is attractive due to their smaller size, low immunogenicity, and low-cost production. Although covalent strategies for the preparation of such ScFv-based therapeutic conjugates are prevalent, this approach is not straightforward, as it requires prior chemical activation and/or modification of both the ScFv and the therapeutics for the application of robust chemistries. A non-covalent alternative based on ScFv fused to maltose-binding protein (MBP) acting as a binding adapter is proposed for active targeted delivery. MBP-ScFv proves to be a valuable modular platform to synergistically bind maltose-derivatized therapeutic cargos through the MBP, while preserving the targeting competences provided by the ScFv. The methodology has been tested by using a mutated maltose-binding protein (MBP I334W) with an enhanced affinity toward maltose and an ScFv coding sequence toward the human epidermal growth factor receptor 2 (HER2). Non-covalent binding complexes of the resulting MBP-ScFv fusion protein with diverse maltosylated therapeutic cargos (a near-infrared dye, a maltosylated supramolecular beta-cyclodextrin container for doxorubicin, and non-viral polyplex gene vector) were easily prepared and characterized. In vitro and in vivo assays using cell lines that express or not the HER2 epitope, and mice xenografts of HER2 expressing cells demonstrated the capability and versatility of MBP-ScFv for diagnosis, imaging, and drug and plasmid active targeted tumor delivery. Remarkably, the modularity of the MBP-ScFv platform allows the flexible interchange of both the cargos and the coding sequence for the ScFv, allowing ad hoc solutions in targeting delivery without any further optimization since the MBP acts as a pivotal element.Ministerio Economia, Industria y Competitividad - FEDER funds CTQ2014-55474-C2-1-R CTQ2014-55474-C2-2-R CTQ2017-86125-PSpanish Government FPU17/0474
    corecore