4 research outputs found

    A Complete Framework for a Behavioral Planner with Automated Vehicles: A Car-Sharing Fleet Relocation Approach

    Get PDF
    Currently, research on automated vehicles is strongly related to technological advances to achieve a safe, more comfortable driving process in different circumstances. The main achievements are focused mainly on highway and interurban scenarios. The urban environment remains a complex scenario due to the number of decisions to be made in a restrictive context. In this context, one of the main challenges is the automation of the relocation process of car-sharing in urban areas, where the management of the platooning and automatic parking and de-parking maneuvers needs a solution from the decision point of view. In this work, a novel behavioral planner framework based on a Finite State Machine (FSM) is proposed for car-sharing applications in urban environments. The approach considers four basic maneuvers: platoon following, parking, de-parking, and platoon joining. In addition, a basic V2V communication protocol is proposed to manage the platoon. Maneuver execution is achieved by implementing both classical (i.e., PID) and Model-based Predictive Control (i.e., MPC) for the longitudinal and lateral control problems. The proposed behavioral planner was implemented in an urban scenario with several vehicles using the Carla Simulator, demonstrating that the proposed planner can be helpful to solve the car-sharing fleet relocation problem in cities.This research was funded by the Goberment of the Basque Country (funding no. KK-2021/00123 and IT1726-22) and the European SHOW Project from the Horizon 2020 (funding no. 875530)

    Intelligent Torque Vectoring Approach For Electric Vehicles With Per-Wheel Motors

    Get PDF
    Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.The research leading to these results has been supported by the ECSEL Joint Undertaking under Grant agreement no. 662192 (3Ccar). This Joint Undertaking receives support from the European Union Horizon 2020 research and innovation program and the ECSEL member states

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years

    Lateral Evasive Maneuver with Shared Control Algorithm: A Simulator Study

    Get PDF
    Shared control algorithms have emerged as a promising approach for enabling real-time driver automated system cooperation in automated vehicles. These algorithms allow human drivers to actively participate in the driving process while receiving continuous assistance from the automated system in specific scenarios. However, despite the theoretical benefits being analyzed in various works, further demonstrations of the effectiveness and user acceptance of these approaches in real-world scenarios are required due to the involvement of the human driver in the control loop. Given this perspective, this paper presents and analyzes the results of a simulator-based study conducted to evaluate a shared control algorithm for a critical lateral maneuver. The maneuver involves the automated system helping to avoid an oncoming motorcycle that enters the vehicle’s lane. The study’s goal is to assess the algorithm’s performance, safety, and user acceptance within this specific scenario. For this purpose, objective measures, such as collision avoidance and lane departure prevention, as well as subjective measures related to the driver’s sense of safety and comfort are studied. In addition, three levels of assistance (gentle, intermediate, and aggressive) are tested in two driver state conditions (focused and distracted). The findings have important implications for the development and execution of shared control algorithms, paving the way for their incorporation into actual vehicles.This research is supported by the EU Commission HADRIAN project. HADRIAN has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 875597. The publication is supported by the EU Commission Aware2All project, under grant agreement No 97878
    corecore