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Abstract: Shared control algorithms have emerged as a promising approach for enabling real-time
driver automated system cooperation in automated vehicles. These algorithms allow human drivers
to actively participate in the driving process while receiving continuous assistance from the automated
system in specific scenarios. However, despite the theoretical benefits being analyzed in various
works, further demonstrations of the effectiveness and user acceptance of these approaches in real-
world scenarios are required due to the involvement of the human driver in the control loop. Given
this perspective, this paper presents and analyzes the results of a simulator-based study conducted
to evaluate a shared control algorithm for a critical lateral maneuver. The maneuver involves the
automated system helping to avoid an oncoming motorcycle that enters the vehicle’s lane. The
study’s goal is to assess the algorithm’s performance, safety, and user acceptance within this specific
scenario. For this purpose, objective measures, such as collision avoidance and lane departure
prevention, as well as subjective measures related to the driver’s sense of safety and comfort are
studied. In addition, three levels of assistance (gentle, intermediate, and aggressive) are tested in two
driver state conditions (focused and distracted). The findings have important implications for the
development and execution of shared control algorithms, paving the way for their incorporation into
actual vehicles.

Keywords: shared control; automated driving; driver-automation cooperation; simulator-based
study; safety; user acceptance

1. Introduction

In recent years, the automotive industry has seen a considerable increase in the
implementation of automated driving technologies due to their potential to improve road
safety and efficiency [1]. These technologies range from Level 3 to Level 5 on the SAEJ3016
automation scale [2], and they allow sharing or even overriding of vehicle control from the
human driver.

However, despite the increase in the number of works and developments related to
highly automated systems for vehicles, completely replacing human drivers with these
approaches remains a challenging task [3,4]. In fact, human drivers are still the most
dependable agents when performing a dynamic driving task, with safety statistics still
surpassing those of automated systems when performing the driving task [5]. Nevertheless,
their performance decreases significantly when their role is to oversee the automated
system and they do not take part actively in the driving task [6].

Moreover, the legislation issues related to the allocation of faults or damages related
to a crash or accident is still a challenging issue when automated driving technologies are
involved. A recent study [6] has revealed that in scenarios where the driver can override the
automated system for corrective action (such as cases in which the driver can operate the
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steering wheel or the pedals), the blame of the accident falls on the human driver and not
on the automated system. This study further highlights that even if it can be demonstrated
that human skills in monitoring and supervising the automated system are sub-optimal
and fail to meet safety standards compared to when the human driver is solely in control,
the responsibility for crashes continues to rest with the human driver.

The aforementioned issues have led some authors to propose cooperation between
human drivers and vehicle automated systems during the driving task as a means to
improve safety and efficiency [7–9]. Among the proposed approaches to overcome this
challenge, shared control algorithms have emerged as a potential solution, as these algo-
rithms allow active driver engagement in the driving task while maintaining continuous
control assistance through the automated system [10].

One of the typical applications of shared control is its implementation as part of the
lateral control of the vehicle by means of a haptic control strategy that allows both the
human driver and the automated system to interact with the steering wheel [11]. This
approach allows a combination of the torque generated by both agents, allowing mutual
intentions to be perceived and predicted [12,13].

Based on the input torque applied by the driver on the steering wheel, some of the
works proposed in this area have focused on predicting the driver’s intention to manage
the driver-automated system interaction. Refs. [14,15], for instance, use the applied torque
as a reference for the trajectory planner. Other works, such as [16], use the lateral offset
and the lateral velocity, while [17] also considers the angular deviation caused by the
driver to modify the trajectory. These approaches are cost-effective, as they require no
additional in-vehicle equipment. However, predicting the driver’s intention is a complex
task, generally applied to easy driving conditions. For safety-critical situations, on the
contrary, human response is less predictable, and the previous applications can no longer
be applicable.

In safety-critical situations, rather than predicting the driver’s intention, the automated
system is authorized to actively participate in the control loop, compensating or correcting
the driver to prevent vehicle off-road incidents or collisions. This is the case, for instance, in
lane-keeping systems, which aim to aid drivers in maintaining their position within the lane,
particularly during moments of distraction. Several studies have studied the application of
shared control for these systems [18,19], with a range of steering support torque between
2–4 Nm. A particularly interesting work in this field is that of Park et al. [20], who focused
their research on determining the optimal steering torque for lane-centering support,
finding an average optimal value of 2.5 Nm based on objective and subjective metrics.

However, the aforementioned works are not focused on critical maneuvers, in which
the assistance levels should be higher. Common critical scenarios often involve unsafe
lane changes, often due to factors such as vehicles appearing in blind spots or unintended
road departures. Steering assistance in these scenarios has been explored at varying torque
levels, such as 5 Nm [21,22], 8 Nm [23], and even close to 10 Nm [24,25]. These later studies
have shown promising results in mitigating most unsafe incidents.

This work aims to further contribute to this latter field by introducing an even more
critical maneuver, namely lane invasion, where the steering support level is evaluated in a
thorough study considering a balance between safety and driver acceptance. The proposed
work presents a similar approach to the overriding Guardian Angel concept presented
in [26]. In particular, the focus of the developed approach focus lies on preventing frontal
collisions caused by lane invasions.

To conduct this study, a combination of objective indicators—such as successful colli-
sion avoidance and avoidance of off-road incidents—and subjective indicators—capturing
drivers’ perceptions of the maneuver—were incorporated. Additionally, given the piv-
otal role of driver-automated system interaction in shared control, an assessment of user
acceptance was undertaken by comparing three distinct levels of driving assistance torques.

This work has been performed under the umbrella of the HADRIAN project https:
//hadrianproject.eu/ (accessed on 4 May 2023) and the Aware2all project https://www.
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ccam.eu/projects/aware2all/ (accessed on 15 October 2023), funded both by the European
Commission. These projects are focused on the improvement of human-to-vehicle inter-
action in the scope of automated driving features. For that, different interaction channels
are explored, and this work focuses on interaction based on the direct collaboration at the
steering wheel during potential collision situations.

The rest of the paper is organized as follows: Section 2 describes the setup of the experi-
ment and provides a comprehensive explanation of the developed controller.
Section 3 describes the test procedure, along with the study design and the defined metrics.
In Section 4, the results obtained from the experiment are presented and distributed into
objective and subjective metrics. Section 5 is dedicated to the discussion of these results,
providing in-depth analysis and interpretation. Lastly, in Section 6, the key findings of the
study are summarized, and the concluding remarks are presented.

2. Experimental Setup
2.1. Test Scenario

The statistics from the Spanish National Traffic Organization (DGT) indicate that
75–80% of total road casualties occur on two-way conventional roads with speed limits
up to 90 kph. Of these cases, 40% are related to vehicles going off-road, while 27% are
casualties derived from frontal collisions [27].

Hence, this section proposes a haptic shared control approach focused on preventing
collisions in two-way conventional roads. The proposed test scenario is designed to force
an emergency lateral evasive maneuver to prevent a frontal collision and the following
off-road situation.

In this test scenario, the ego vehicle (depicted in blue) travels at 90 kph along a
two-way road. Meanwhile, on the opposite lane, an oncoming vehicle (depicted in brown),
also at 90 km/h, and a motorcycle are approaching. The oncoming vehicle blocks the
visibility of the motorcycle behind. Suddenly, the motorcyclist performs a reckless overtake,
invading the ego vehicle’s lane and leaving little time to react and maneuver to avoid a
collision, as the ego vehicle has no time to anticipate the situation. Figure 1 depicts the
maneuver sequence.

1. Manual
2. Emergency 

collision detection
3. Lateral evasive 

maneuver
4. Motorbike 

avoided
5. Lane departure 

avoidance
6. Manual

1 2
3

4
5

6

1

2

3
45

6

23456

Figure 1. Lateral evasive maneuver sequence.

To provide the same reaction time before the potential crash, the motorcycle is pro-
grammed to appear at a specific distance from the ego vehicle. In addition, the motorcycle
does not perform the overtake maneuver in every scenario in order to prevent the partici-
pants from predicting this scenario.

Both crashing into the motorcycle and departing the lane (going off-road) are consid-
ered to be an accident. Consequently, the space allowed for a safe maneuver is defined as
shown in Figure 2.

https://www.ccam.eu/projects/aware2all/
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Figure 2. Safe maneuver scenario.

2.2. Setup and Equipment

To perform the simulator-based study, a simulation-based environment is used
(Figure 3). The simulator is developed using several off-the-shelf components that are
integrated to provide a realistic driving experience. The steering wheel is part of the
Augury H kit, which consists of a servomotor actuator, a Simucube motor controller, and
a racing steering wheel. The servomotor actuator includes a brushless DC motor with a
current sensor and an incremental encoder. The actuator can generate a maximum torque
of 18 Nm and a power of 1.5 KW. The applied torque is measured through the current
sensor. The simulator is complemented by racing pedals featuring mechanical damping
and a racing seat.

The developed simulator includes three 32-inch LCD screens that allow realistic
immersion in the driving task by using rendered 3D environments of the scenario. In
addition, a touch display has been included to emulate a phone and analyze the effect
of performing secondary tasks while driving. The vehicle dynamics and the proposed
scenario are simulated in Dynacar® [28] while the required control algorithms are executed
in Matlab Simulink R2021b .

Figure 3. Driving simulator setup for the user tests.

2.3. Shared Controller

The haptic shared controller used in this work is based on the one proposed in [19].
This controller is built upon three main principles:

1. It applies torque as the control signal to seamlessly cooperate with the driver, instead
of treating the driver as a disturbance (as position-based controllers do [29]).
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2. The controller has the ability to adjust its authority (i.e., stiffness), thus providing
varying levels of resistance to the driver’s steering wheel actions. Also, it is essential
for the controller to maintain stability across different values of authority.

3. The controller relies on optimal control to balance multiple objectives within the
driver-automation system (e.g., comfort, safety, and effectiveness) [10].

The shared control approach is implemented using nonlinear model predictive control
(NMPC), known for effectively managing nonlinearities and constraints while optimizing
performance over time horizons, leading to superior control performance compared to
approaches that consider only the current system state.

This control approach requires the definition of a dynamic model that comprises the
vehicle dynamics, the road–vehicle representation, and the steering wheel model. The
dynamic equations can be rewritten as a nonlinear state-space function [19],

ẋ(t) = f(x(t), u(t)) (1)

where x(t) is the state-space vector, comprised of the variables that define the dynamic
model, such as the vehicle’s position and orientation in the global frame [X, Y, Ψ], lon-
gitudinal and lateral speeds [v̇x, v̇y], yaw rate Ψ̇, wheel turn angle δ, lateral and angular
errors [ey, eΨ], and steering wheel angle and rotational speed [θ, ω]. On the other hand,
u(t) represents the control action sequence to be calculated by the NMPC controller, in
which the control torque exerted by the actuated steering wheel Tmpc and its discrete-time
derivative ∆Tmpc are included.

This way, the NMPC control law can be defined as a constrained optimization problem
V that can be solved using an NMPC solver, as detailed in [19],

min
Tmpc

J(x(k), u(k)) (2)

s.t.

|Tmpc(k)| ≤ Tmax, k = 1, . . . , N (3)

|∆Tmpc(k)| ≤ ∆Tmax, k = 1, . . . , N (4)

|ey(k)| ≤ eymax , k = 1, . . . , N (5)

|ψ(k)| ≤ ψmax, k = 1, . . . , N (6)

where k is the time step after discretization and N is the prediction horizon of the NMPC.
The cost function J(x(k), u(k)) is defined to allow tracking the desired vehicle tra-

jectory ([X, Y, Ψ]) and reducing the drift related to the yaw rate (ψ) during the evasive
maneuver, while minimizing the control torque (Tmpc) and its derivative (∆Tmpc) in order
to improve the comfort of the steering assistance,

J(x(k), u(k)) = ||X − Xr||
2

WX
+ ||Y − Yr||

2

WY
+ ||Ψ − Ψr||

2

WΨ
+ (7)

||ψ − ψr||
2

Wψ
+ ||Tmpc||

2

WT
+ ||∆Tmpc||

2

W∆T
(8)

where WX, WY, WΨ, WΨ, WT and W∆T are the corresponding optimization weight matrices.
The constraints have been defined to ensure proper operation of the shared control.

Safety-related constraints have been included to ensure that the calculated torque prevents
vehicle deviation from the road (eymax and ψmax), resulting in an off-road scenario during
the evasive maneuver.

In addition, torque constraints have been included to prevent discomfort in the driver-
automated system interaction by limiting the actuated torque Tmax and its time change
∆Tmax. In fact, these variables are directly related to the stiffness of the controller (or
authority), which is one of the main features of the shared controller proposed in [19].
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For this purpose, an authority variable λ is defined to adjust the stiffness of the
controller and is included in the torque equation of the previously defined model as follows:

Ṫmpc = λ∆Tmpc (9)

The authority parameter λ lacks units, making it difficult to intuitively assign its value.
To address this problem, a new authority parameter, λ̂, is introduced, which is defined as
the maximum torque λ̂ = Tmax. This torque is defined as the maximum experienced when
approaching the boundary of the lane (specifically, at a distance of 2 m from the center of
the lane).

The relationship between both parameters is related by a linear function which consid-
ers the physical torque limits of the steering wheel motor (15 N in the simulator used) and
is adjusted experimentally,

λ = f (λ̂) =

{
2.4λ̂ − 6.3 if λ̂ ≥ 3
1 if λ̂ < 3

(10)

This way, for the test scenario and simulation equipment used, the NMPC has been
tuned with a nominal value of λ̂ = 3, which limits the assistance to 3 N·m.

Note that as λ increases, so does the stiffness of the controller, which may cause
oscillations. Hence, as detailed in [19,23], a scaled damping variable b̂ is introduced in the
steering actuator motor controller to improve stability,

b̂ = b

√
λ + 1

2
(11)

where b = 0.65 N·m/s is the damping related to the steering system dynamics.
Finally, to perform the avoidance maneuver, the reference trajectory for the NMPC

lateral controller is adjusted by considering a prediction horizon with a length of 1.5 s
(N = 30). It is to be noted that the vehicle calculates two routes simultaneously, a reference
route related to the regular driving (rA) and the evasion reference route, which, as depicted
in Figure 4, is located displaced to the right border of the lane (rB). This way, if the relative
distance d(k) from a predicted future position of the vehicle and the motorcycle falls below
a predefined threshold, the reference route changes from the regular one (rA) to the evasion
reference one (rB).

The controller parameters, which have been tuned experimentally, are summarized
in Table 1.

Table 1. Parameters of the NMPC lateral vehicle controller.

Vectors x u ∆u

Variables X Y Ψ vx vy ψ ey eψ θ w Tmpc ∆Tmpc

Wz 50 50 50 0 0 100 0 0 0 0 0.2 0.2
Min/Max - - - - - ±0.75 ±2 - - - ±λ̂ ±2λ
Units m m rad m/s m/s rad/s m rad rad rad/s N·m N·m/s

To illustrate the controller’s performance, data from an evasive maneuver conducted
with a distracted driver across various authority levels (represented by three distinct
λ̂ values) is presented below, in Figure 4. The results indicate consistent adherence to
NMPC constraints and the vehicle’s sustained performance and stability prior to, during,
and after the maneuver. As expected, a higher λ̂ value appears to enhance the likelihood of
preventing a collision with the motorcycle. Note that the effect and a thorough analysis of
the different authority values will be further explained next.
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(a) λ̂ = 3

(b) λ̂ = 6

(c) λ̂ = 12
Figure 4. Ego vehicle trajectory, torque, and torque derivative responses to the lateral evasive
maneuver for three different values of authority.

2.4. Test Configurations

In the proposed study, the performance of the previously detailed shared control
approach for the lateral assistance maneuver detailed in Section 2.1 is evaluated. This
evaluation encompasses various levels of driving assistance torques and two driver aware-
ness levels.

Regarding the driver’s state, two states are evaluated: attentive and distracted. The
attentive state represents a normal driving scenario where the driver is attentive to the
road. In this state, the automated system executes the longitudinal control via cruise
control (CC) for speed regulation and a lane departure avoidance system for lateral control,
where the driver can move freely inside the lane. Conversely, the distracted state simulates
inappropriate driver behavior, where the driver is engaged in a secondary task rather than
focusing on the road. Here, CC longitudinal control is combined with a lane-centering
system [19] to enhance driver safety. Note that in order to evaluate this approach, a touch
panel with a secondary task is included in the proposed simulator (see Section 2.2).

Concerning the assistance levels, the shared controller detailed in Section 2.3 is tuned
to provide three different torque levels in the steering wheel: gentle, intermediate, and
aggressive assistance. Each level is related to a maximum torque level Tmax that the steering
system can apply. The gentle assistance ranges up to 3 Nm (the nominal value defined in
the previous section), intermediate up to 6 Nm, and aggressive up to 12 Nm.

The gentle assistance provides a smooth turn that helps the driver react faster, but it is
easily overridden by the driver. The intermediate level is the minimum required torque
to avoid the crash in a safe way. However, the driver can override this torque level, so in
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case the driver does not agree with the correction, the driver can override it. Finally, the
aggressive level provides a strong correction torque that overrides the driver. This does not
imply that the crash will always be avoided in this mode, as the reaction time is very tight.
These three reference torque values were established after iterative testing to identify the
most suitable assistance level for each driver state.

The aforementioned six test cases to be studied are listed in Table 2.

Table 2. Studied test cases based on driver state and assistance strength.

Torque Levels
Driver Awareness

Attentive Distracted

Gentle <3 Nm AG DG
Intermediate <6 Nm AI DI
Aggressive <12 Nm AA DA

In addition, to evaluate the performance of the shared control system detailed in
Section 2.3, two baseline scenarios will be considered:

1. Automation-only baseline: The automated system performs the evasive maneuver
with no driver involvement. This baseline was not executed by the participants.

2. Driver-only baseline: The participant executes the evasive maneuver without any
assistance from the automated system.

3. Test Procedure
3.1. Participants

A total of 24 participants (8 female and 16 male), with an average age of 36 years
(ranging from 22 to 59) took part in the study. They were recruited from Tecnalia https://
www.tecnalia.com/ (accessed on 2 February 2023) facilities. All participants held university
degrees, representing various research fields such as construction, IT, pharmaceuticals, and
automotive. Among them, 92% were employed full-time, while the remaining participants
were students.

Regarding the driving experience, most of the participants were experienced drivers.
Half of them had more than a decade of experience driving and 42% had between 2 and
10 years of experience. Familiarity with driving assistance systems varied; nearly half of
the participants had experience with cruise control (CC) or adaptive cruise control (ACC)
in their vehicles, although familiarity with lane-keeping systems was limited. A summary
of the demographic data can be found in Figures 5 and 6.

All participants signed an informed consent form providing written permission to
capture their driving performance data.

Age

Gender

Figure 5. Demographic data of the participants: age and gender.

https://www.tecnalia.com/
https://www.tecnalia.com/
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Car available Driving experience

Driving frequency Distance driven in last 
12 months

Figure 6. Driving experience of the participants.

3.2. Test Procedure and Instructions

The participants were instructed to drive the simulator, as detailed in Section 2.2, in
the collision prevention scenario outlined in Section 2.1. They completed the scenario seven
times, once for each of the different test configurations specified in Table 2, in addition to
the driver-only baseline.

As explained in Section 2.1, the scenario incorporated eleven oncoming vehicles, with
five motorcycles overtaking in a randomized manner, which participants had to avoid by
an evasive lateral maneuver.

Specific instructions provided to the participants varied depending on the particular
test configuration. During the attentive tests, participants were asked to keep their eyes
on the road and pay attention to incoming events. However, during the distracted tests,
participants engaged in a secondary task involving “find the differences” puzzles presented
in a strategically placed touch panel within the simulator. This task ensured that the
road was out of the participant’s field of view while performing it. Participants were
instructed to perform the secondary task with their right hand, while keeping the left
hand on the steering wheel at all times. This approach ensured that the driver remained
partially engaged in the control loop, perceiving the assistance torque provided by the
shared control system.

After providing the different instructions, participants were given sufficient time to
familiarize themselves with the simulator, allowing them to learn its operation and become
comfortable with the driving experience.

3.3. Validity and Reliability

The simulator study has been conducted following the guidelines outlined in [30] to
ensure a meticulous user acceptance study while minimizing simulator-induced effects.
The correlation between a simulator study’s validity and an on-road study does not only
rely on the fidelity of the simulator. Interestingly, some low-fidelity simulators can provide
acceptable validity for specific measures, while some high-fidelity simulators might appear
invalid in certain aspects [31].

To hold methodological integrity, a within-subject design was adopted for this study. In
this experimental approach, all participants experienced each of the defined configurations.
To mitigate any potential bias resulting from the sequence of configurations, the seven test
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cases allocated to each participant were evenly distributed across all participants. Table 3
illustrates the equitable distribution of test sequences achieved through the utilization of
a Youden square with substitutions. Seven possible orders were established, and each
participant followed one of these predefined orders.

Before the beginning of the tests, participants received detailed instructions on simula-
tor operation and the experimental procedures, as previously outlined.

Table 3. Test order of each participant for seven cases.

Participants Test Order

1 AI DI DG DA BL AA
2 DI AA BL AG DG DA
3 DG AG DA DI AI BL
4 DA BL AG DI AA AI
5 BL DA AI AA DG AG
6 BL AA AI AG DI DG
7 AG DG DI DG DA AI

Legend: AG: Attentive, Gentle. AI: Attentive, Intermediate. AA: Attentive, Aggressive. DG: Distracted, Gentle.
DI: Distracted, Intermediate. DA: Distracted, Aggressive. BL: Driver-only Baseline.

To start each session, participants began with manual driving, without any assistance,
to reset their familiarity with previously tested systems. Then, participants executed the
scenario with one of the test configurations following the predetermined order. After exe-
cuting each test, participants completed a user acceptance test specific to the configuration
tested, rating it in terms of strength and safety on a nine-level Likert scale.

In addition, when performing the different tests, if a crash occurred or the vehicle left
the road, a vibration pattern was configured in the steering wheel, so that the participant
would be informed of the crash.

3.4. Data Collection and Analysis

One of the main contributions of this study is that both quantitative and qualitative
metrics were considered. For each of them, statistical analyses based on ANOVA tests were
performed. This method is particularly suitable for assessing differences among the means
of multiple tests, proving if there is a test that is significantly different from the others.

To address the differences between the six specific configurations, the Tukey HSD post
hoc test was conducted. This post hoc test is particularly useful as it allows identifying sig-
nificant differences of specific configurations in multiple comparisons in a straightforward
way, and compared to alternatives like Bonferroni, it provides more precise estimations [32].

3.4.1. Quantitative Metrics

Regarding quantitative metrics, three main metrics are used: (1) distance to collision
(DTC) between the ego vehicle and the motorcycle, (2) time to collision (TTC), and (3) lateral
deviation of the ego vehicle.

Distance to collision (DTC) is categorized as follows:

• “Crash” is considered to be when DTC is less than or equal to 0 m.
• “Near Miss” is considered to be when DTC falls between 0 meters and 0.2 m.
• “Safe” is considered to be when DTC is equal to or greater than 0.2 m.

It is important to emphasize why “Near Miss” situations are not regarded as safe. This
classification is based on the recognition that a distance of 20 cm between a motorcycle and
another vehicle is considered a threshold, considering the typical size of vehicle rear-view
mirrors. Such near misses may imply a lateral contact between the two vehicles, posing a
safety risk to the motorcyclist.

Time to collision (TTC) is measured as the time required for two vehicles to collide if
they continue at the present speed and on the same path [33,34]. However, the calculation
of TTC can vary depending on the specific requirements and the level of accuracy needed.
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The geometric representation of the vehicles can be approximated differently based on the
situation. In some instances, vehicles may be treated as points, while in other cases, they
are surrounded by a circular envelope considering safety parameters [34,35].

In this study, a more precise approach has been adopted by representing both the
vehicle and the motorbike as rectangles. In addition, the rectangle is calculated considering
a prediction of the time evolution of both vehicles in the next two seconds for a particular
time step. The orientation of each rectangle is calculated with the velocity vector of the
vehicle or the motorcycle in each time step. Once the TTC values have been computed, the
minimum values of the TTC in each event have been recorded for their comparison.

Finally, the lateral deviation is evaluated by determining if the center of the ego
vehicle departs from its lane. When this occurs, it is categorized as an “Off-Road” scenario.
Considering that the vehicle’s width is 2 m, a lateral deviation of up to 1 m on the roadside
is deemed acceptable. This decision aligns with the legal requirement in Spain for two-way
roads with a speed limit of up to 90 kph, where a minimum roadside width of 1.5 m is
required. Therefore, this study adopts a conservative approach in its assessment.

When tallying the number of incidents (crashes, near misses, and off-roads), it is
possible for multiple situations to occur simultaneously. In such cases, the following logic
is applied:

• If vehicles collide, it is recorded as a “Crash”, regardless of any subsequent event.
• If a “Near Miss” occurs without a crash, it is categorized as a “Near Miss”.
• If an “Off-Road” scenario is detected, it is classified as an “Off-Road” if neither a

“Crash” nor a “Near Miss” has occurred.
• In case none of the previous situations arises, the complete maneuver can be registered

as “Safe”.

This approach is required as the driving simulator used in the study does not allow
simulating post-collision dynamics, making the events immediately following a collision
unrealistic for the participant.

3.4.2. Qualitative Metrics

Finally, qualitative metrics are used to evaluate user acceptance, safety, and comfort.
For that, two questionnaires have been used: (1) a standardized user acceptance question-
naire [36] was used to gauge the perception of usability, usefulness, and overall satisfaction
of the participants; (2) a custom questionnaire was used to capture the feelings of strength
and safety of the participants. The latter consisted of a nine-level Likert scale to evaluate
strength and safety. Finally, participants were also requested to comment on the system to
obtain further feedback.

4. Results

This section depicts and analyzes the results related to the metrics evaluating the
driving performance and user acceptance provided by the participants.

4.1. Objective Results

In this subsection, an analysis of the quantitative metrics obtained for the proposed
shared control system performance with the participants and the two proposed baselines
(automated system only and driver only) will be analyzed and compared.

4.1.1. Baseline 1—Automated System Only

This baseline is used to portray the different levels of assistance provided by the
system by evaluating its performance without any driver intervention, which corresponds
to the limit condition of the shared control approach (automation only). This way, the
shared controller proposed in Section 2.3, with no human intervention, is activated in the
motorcycle overtaking scenario in the same conditions as the participants (but with no
participant intervention).
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It is important to note that the shared control system is not intended (nor allowed)
to be used without a human driver, as the system is designed to assist the human driver.
However, this test allows us to illustrate the performance of the three different levels of
assistance provided by the system (Section 2.4).

Results are shown in Table 4. As can be seen, without the human driver, the auto-
mated system consistently evades the oncoming motorcycle at every support level. The
intermediate and aggressive assistance levels can fully avoid a collision with the motorbike
by executing a complete evasive maneuver and staying on the road. The gentle level, while
capable of preventing a collision, experienced a near miss with each motorcycle that crossed
its path.

Table 4. Crashes, near misses, and off-roads report on the automated system-only baseline.

Strength Tests km Bikes Crashes NM Off Road Safe

Gentle 1 1.75 5 0 5 0 0
Intermediate 1 1.75 5 0 0 0 5
Aggressive 1 1.75 5 0 0 0 5

4.1.2. Baseline 2—Driver Only

This baseline is used as a reference for manual driving with no assistance systems,
which represents the other limiting condition of shared control. Since no lateral assistance
systems were active, none of the participants were able to execute the collision avoidance
maneuver safely. Instead, they all ended up departing the lane and losing control of
the vehicle.

This outcome suggests that the proposed evasive maneuver was exceptionally chal-
lenging to execute. While it cannot be definitively stated that all cases resulted in crashes or
lane departures, in every test comprising six safety-critical situations, no driver managed
to maintain control of their vehicle throughout.

Furthermore, based on a comparison of their performance with and without the shared
control approach, many participants preferred to have some level of assistance to perform
the lateral maneuver and stabilize the vehicle. The participants even preferred assistance
that felt too strong or uncomfortable.

Since participants were unable to complete this specific test case, obtaining additional
data for it was not prioritized. Consequently, no data from this baseline were included in
the statistical analysis. Instead, the data serve as a qualitative reference point for discussion.

4.1.3. Shared Control System—Driver and Automated System

In this subsection, the main results related to the performance of the participants when
facing the evasive maneuver scenario assisted by the different configurations
(Section 2.4) of the proposed shared controllers are analyzed. The main performance
metrics are summarized in Table 5 for each of the six configurations.

Table 5. Crashes, near misses, and off-roads reports of participants in the 6 different test cases.

Tests km Bikes Crashes NM Off Road Safe

AG 21 34.81 102 12 27 6 47
AI 21 35.15 104 16 18 4 66
AA 21 35.02 105 7 17 5 76
DG 22 38.39 110 89 20 0 1
DI 23 40.11 115 34 42 4 35
DA 23 40.11 115 20 33 3 59

Total 131 223.60 651 188 157 22 284

Please note that due to some unexpected technical malfunctions during the recordings,
some datasets needed to be removed. This way, participants drove a total of 223 km in
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which 651 overtaking events were recorded successfully. In the recorded data, in 43.63% of
the events the motorcycle was safely avoided. This highlights a relatively positive safety
performance in the driving sessions, indicating that almost half of the evasive maneuvers
were handled safely, which implies an important improvement over Baseline 2, where the
participants, without assistance, could not execute safely any test.

Figure 7 summarizes the percentage of each outcome of the evasive maneuvers (crash,
near miss, off-road or safe) for the different assistance levels (aggressive, intermediate and
gentle) and driver awareness levels (attentive and distracted). It compares these levels
with Baseline 1, which represents the performance of the automated system with no driver
intervention.

It can be seen that the safety of the system is always improved with respect to Baseline 2
(driver only), but it heavily depends on the assistance level and the driver’s awareness level.
An aggressive assistance level enables safe execution of the collision avoidance maneuver
in 72% of the cases, while distractions reduce it to 51%. The intermediate level reduces
success to approximately 63%, still considered acceptable. However, when distracted, this
falls to 30%.

Regarding the gentle assistance level, even though it can provide assistance to perform
the maneuver safely in 46% of the cases if the driver is attentive, distractions reduce this
percentage to only 1%, proving to be almost useless assistance. In any case, the performance
of the shared control approach is consistently better than Baseline 2 (driver only), but its
performance decreases with respect to Baseline 1 (automated only).
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17%
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Figure 7. Percentage of crashes, near misses, and off-roads for the attentive and distracted drivers,
and for the automated-only baseline.

To assess the statistical significance of the data provided, a one-way ANOVA was
performed for each of the reported outcomes: crashes, near misses, and off-road incidents.
For each of them, the mean of the six studied test configurations (AG, AI, AA, DG, DI,
and DA) was compared, resulting in the following F-ratio values. These values represent
the degrees of freedom in the analysis: 5 in the numerator (reflecting the number of
configurations minus 1) and 15 in the denominator (derived from the total number of
observations, 21, minus the number of groups, 6).

• Crashes: (F(5,15) = 26.94, p < 0.05).
• Near misses: (F(5,15) = 3.14, p < 0.05).
• Off-roads: (F(5,15) = 0.96, p > 0.05).
• Safe: (F(5,15) = 17.06, p < 0.05).
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The data related to “Crash”, “Near-miss” and “Safe” outcomes show a significant
difference in the means of the six test configuration cases (p < 0.05). Conversely, the data
concerning “Off-Road” incidents revealed no significant difference(p = 0.44 > 0.05).

To identify the specific groups contributing to this difference, a Tukey’s HSD post hoc
test was conducted. When analyzing “Safe” cases, a significant difference was observed in
comparing attentive and distracted states for both the gentle and intermediate levels:

• DG–AG: p < 0.05
• DI–AI: p < 0.05
• DA–AA: p > 0.05

At the aggressive level, however, the differences are less pronounced, which also can
be visually spotted in Figure 7. It is noticeable that as the assistance level increases, the
distinction between the two driver awareness states becomes less prominent. This is logical,
as the torque provided by the automated system can more easily override the driver as
assistance increases.

If unsafe cases are analyzed, the “Crash” scenarios notably decrease with increasing
assistance levels. This trend is observed in both attentive and distracted cases, and is
especially pronounced in the distracted scenario, where the percentage of crashes drops
from 82% in gentle to 17% in aggressive mode. Notably, DG stands out as significantly less
safe than the rest of the tested configurations.

Regarding the “Near-miss” incidents, a similar trend emerges, except for the DG case,
where a majority of recorded cases are categorized as crashes, reducing the number of
“Near-miss” cases.

Figures 8 and 9 show the statistical distribution using boxplots of each tested config-
uration per resulting scenario, i.e., “Crash”, “Near-miss”, “Off-road”, and “Safe”. These
graphs confirm the tendencies shown in Figure 7.

crash near-miss off-road

ATTENTIVE DRIVER MODE

safe

Figure 8. Safe cases distribution regarding the 3 assistance levels with an attentive driver.

crash near-miss off-road safe

DISTRACTED DRIVER MODE

Figure 9. Safe cases distribution regarding the 3 assistance levels with a distracted driver.
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A more detailed insight into the proposed quantitative metrics is provided in the next
figures. Figure 10 shows the distribution of the distance to collision (DTC) for each test
configuration (DG, DI, DA, AG, AI, AA) and Baseline 1 (AuG, AUI, and AUA). Note that
all configurations related to an attentive driver state exhibit mean DTC values above the
“Safe” threshold (>0.2 m). However, in distracted state configurations, only the DA test
configuration slightly surpasses this threshold. In DG, only a few outliers avoid crashing.

Figure 11 details the statistical results related to time to collision (TTC). Notably, the DG
(distracted driver with gentle assistance) case exhibits a considerably lower TTC compared
to the others. Conversely, for the remaining cases, there is a noticeable upward trend in
TTC as the level of support assistance increases, especially when the driver is attentive.

Safe

Near miss

Crash

Figure 10. Distance-to-collision boxplots for each assistance level and for each driver state and the
DTC values obtained for the automated-only baseline.

Figure 11. Time-to-collision boxplots for each assistance level and for each driver state and the TTC
values obtained for the automated-only baseline.
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Comparing the performance with the automated system-only test case (Baseline 1),
attentive drivers improve the TTC in the gentle mode. However, in all other cases, Base-
line 1 consistently shows higher TTC than the driver, regardless of their attentive or
distracted state.

In terms of statistical significance, the results of a one-way ANOVA reveal a meaningful
difference in the means between the six cases (p < 0.05). Subsequently, Tukey’s HSD test
emphasizes these differences. Specifically, all comparisons between attentive and distracted
drivers for each strength value show a significant difference.

• DG–AG: p < 0.05
• DI–AI: p < 0.05
• DA–AA: p < 0.05

This means that an attentive driver state is crucial for successfully avoiding the motor-
bike, which aligns with expectations.

4.2. Subjective Results

As previously detailed, a set of qualitative metrics, based on user acceptance tests
and the evaluation of the interaction with the shared control, were employed to perform a
subjective evaluation based on the perception of the participants.

Figure 12 presents a comparative analysis of user acceptance scores across three
support levels within the attentive and distracted driver modes. The assessment of user sat-
isfaction indicates that the aggressive support mode is the least favored among participants.
Similarly, participants perceive the DG mode as dissatisfying due to its limited assistance.
In contrast, the intermediate support level receives the highest satisfaction ratings.
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Figure 12. User acceptance results regarding attentive (green circle) and distracted drivers (gray
circle), with gentle (light blue), intermediate (blue), or aggressive (dark blue) support levels.

Regarding usefulness, both the intermediate and aggressive support levels receive
higher scores, while the gentle mode is not considered particularly beneficial. Taking both
satisfaction and usefulness into account, the intermediate assistance level emerges as the
best option.

Figure 13 illustrates the correlation between perceived strength and safety. Participants
perceive the gentle scheme as overly soft and less safe, while the aggressive correction is
perceived as excessively strong. This suggests an optimal strength level lying between
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the gentle and intermediate levels. Interestingly, all three support levels are perceived as
equally safe, except for DG and AA.

In summary, the subjective analysis reveals that neither extreme end of the support
spectrum is regarded as user-friendly. Inadequate assistance or excessive intervention is
seen as unsuitable. In contrast, the intermediate level reaches a balance between effective-
ness and not being overly strong. Overall, it is considered the preferred choice.
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Figure 13. Safety–strength results regarding attentive (green circle) and distracted drivers (gray
circle), with gentle (light blue), intermediate (blue), or aggressive (dark blue) support levels.

5. Discussion

Our study found that the evasive maneuver support functionality effectively reduces
the risk and number of accidents, receiving positive user acceptance ratings. Among
the three tested schemes, the intermediate level (6 Nm) received the highest subjective
evaluation in terms of user acceptance and safety. The subjective ratings regarding the
strength level suggest that users would prefer an intermediate or even lower level of
strength (3 Nm). However, objective measurements indicate that the aggressive scheme
(12 Nm) could potentially further decrease the number of accidents. Nevertheless, user
acceptance surveys cannot be neglected, because having a system with low acceptance
would mean that it would not be used, which implied results such as the ones shown
in Baseline 2 (driver only), with crash scenarios occurring at a frequency of 100% in the
proposed critical maneuver. Moreover, even if during the test the participants face up to
21 lateral emergency maneuvers, during the daily use of a vehicle, these critical evasive
maneuvers are rare, so it could be considered that the driver would give higher weight to
the safety rather than to the acceptance.

On the other hand, the gentle level of assistance should not be considered for this kind
of maneuver, as it shows significantly lower metrics. However, it should be remarked that
the drivers alone could not perform the maneuver safely during the tests, while having
gentle support in attentive mode showed a 46% of success rate, proving that even the worst
support system shows a great level of improvement with respect to not using any.

6. Conclusions

This paper presents the outcomes of a simulator-based study focused on evaluating
a shared control approach designed to execute a safe lateral evasive maneuver, aiming
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to prevent collisions. The objective is to provide both objective results related to the
performance of the system and subjective evaluations based on user acceptance from
participants. These findings offer valuable insights to determine the effectiveness of the
shared control approach and its potential implications for real-world implementation.

To perform the study, a set of participants drove a vehicle simulator in which the
proposed shared control approach was implemented, and a critical collision avoidance
scenario was programmed. A set of six different test configurations were proposed con-
sidering the driver state (attentive or distracted), and the assistance level of the controller
(gentle, intermediate or aggressive). In addition, two baselines were defined, a driver-only
scenario, and an automated system-only one.

Results indicate that although objective measurements suggested that an aggressive
assistance level is the safest in terms of the number of accidents, an intermediate level of
assistance is the one with higher user acceptance and safety subjective perception. In fact,
participants preferred an intermediate or lower level of assistance, prioritizing it over an
aggressive one.

Considering the comparison with the proposed baseline approaches, results indicate
that shared control approaches, in any configuration, provide a considerable improvement
in maneuver safety compared to no assistance at all. However, it should be emphasized
that the statistical analysis carried out showed that the gentle level of assistance should
not be considered suitable for these maneuvers due to its lower safety performance when
distracted.

In summary, the combination of the human driver and the shared control’s respon-
siveness led to superior performance in evasive maneuvers, significantly reducing the risk
of accidents with respect to manual driving. However, the automated system itself showed
better results working alone rather than in combination with the driver, which shows the
complexity of the cooperation and leaves open future works for improvement.

An interesting technology that could emerge to solve the two previous points is a
steer-by-wire system, where the feedback received in the steering wheel is not necessarily
coupled to the action of the wheels. This way, the steering system in combination with
the shared control could perform Baseline 1-like maneuvers, but without the aggressive
responsiveness of the steering wheel.

While the study yielded promising results, there are some limitations to acknowledge.
The simulation environment, while realistic, may not fully replicate real-world driving
conditions. Furthermore, it is based on normal driving conditions, not considering wet or
icy roads, which could improve the outcome as they are more limiting driving conditions.
Conducting real-world studies with physical vehicles and drivers would complement the
results provided in this work and provide a more comprehensive understanding of shared
control algorithms’ performance and user acceptance. For future works, the identified safer
and user-accepted levels of control strength will be applied in a real vehicle.
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