246 research outputs found

    Analysis of the power balance In the cells of a multilevel cascaded H-Bridge converter

    Get PDF
    Multilevel cascaded H-Bridge converters (CHB) have been presented as a good solution for high power applications. In this way, several control and modulation techniques have been proposed for this power converter topology. In this paper the steady state power balance in the cells of the single phase two cell CHB is studied. The capability to be supplied with active power from the grid or to deliver active power to the grid in each cell is analyzed according to the dc-link voltages and the desired ac output voltage value. Limits of the maximum and minimum input active power for stable operation of the CHB are addressed. Simulation results are shown to validate the presented analysis

    Feed-forward Space Vector Modulation for Single-Phase Multilevel Cascade Converters with any DC voltage ratio

    Get PDF
    Modulation techniques for multilevel converters can create distorted output voltages and currents if the DC link voltages are unbalanced. This situation can be avoided if the instantaneous DC voltage error is not taken into account in the modulation process. This paper proposes a feed-forward space vector modulation method for a single-phase multilevel cascade converter. Using this modulation technique, the modulated output voltage of the power converter always generates the reference determined by the controller even in worst case voltage unbalance conditions. In addition the possibility of optimizing the DC voltage ratio between the H-bridges of the power converter is introduced. Experimental results from a 5kVA prototype are presented in order to validate the proposed modulation technique

    Measurement of the hyperfine splitting of the 6S1/2_{1/2} level in rubidium

    Full text link
    We present a measurement of the hyperfine splitting of the 6S1/2_{1/2} excited level of rubidium using two photon absorption spectroscopy in a glass cell. The values we obtain for the magnetic dipole constant A are 239.18(03) MHz and 807.66(08) MHz for 85^{85}Rb and 87^{87}Rb, respectively. The combination of the magnetic moments of the two isotopes and our measurements show a hyperfine anomaly in this atomic excited state. The observed hyperfine anomaly difference has a value of 87δ85=0.0036(2)_{87}\delta_{85}=-0.0036(2) due to the finite distribution of nuclear magnetization, the Bohr-Weisskopf effect.Comment: 12 pages, 14 figure

    Two-Photon Dichroic Atomic Vapor Laser Lock Using Electromagnetically Induced Transparency and Absorption

    Full text link
    We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5S 1/2, 5P 3/2, and 5D 5/2 levels. This atomic configuration can show Electromagnetically Induced Transparency and Absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5 GHz off atomic resonance.Comment: 6 pages, 8 figures. Last version for publication in J. Opt. Soc. Am.

    Precision measurement of the neutron β-decay asymmetry

    Get PDF
    A new measurement of the neutron β-decay asymmetry A_0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A_0=−0.11954(55)_(stat)(98)_(syst), corresponding to the ratio of axial-vector to vector coupling λ ≡ g_A/g_V = −1.2756(30)

    First direct constraints on Fierz interference in free-neutron β decay

    Get PDF
    Precision measurements of free-neutron β decay have been used to precisely constrain our understanding of the weak interaction. However, the neutron Fierz interference term b_n, which is particularly sensitive to beyond-standard-model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding b_n=0.067±0.005_(stat)^(+0.090)_(−0.061)_(sys), consistent with the standard model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the β spectrometer energy response

    Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Get PDF
    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS

    A VLBI study of the wind-wind collision region in the massive multiple HD 167971

    Get PDF
    Context. Colliding winds in massive binaries are able to accelerate particles up to relativistic speeds as the result of the interaction between the winds of the different stellar components. HD 167971 exhibits this phenomenology which makes it a strong radio source. Aims. We aim at characterizing the morphology of the radio emission and its dependence on the orbital motion, traced independently by NIR-interferometry, of the spectroscopic binary and the tertiary component that conforms HD 167971. Methods. We analyze 2006 and 2016 very long baseline interferometric data at C and X bands. We complement our analysis with a geometrical model of the wind-wind collision region, and with an astrometric description of the system. Results. We confirm that the detected non-thermal radio emission is associated with the wind-wind collision region of the spectroscopic binary and the tertiary component in HD 167971. The wind-wind collision region changes orientation in agreement with the orbital motion of the tertiary around the spectroscopic binary. The total intensity also changes between the two observing epochs in a way inversely proportional to the separation between the SB and T, with a negative-steep spectral index typical of an optically thin synchrotron emission possibly steepened by an inverse Compton cooling effect. The wind-wind collision bow-shock shape and its position with respect to the stars indicates that the wind momentum from the spectroscopic binary is stronger than that of the tertiary. Finally, the astrometric solution derived for the stellar system and the wind-wind collision region is consistent with independent Gaia data.Comment: Accepted for publication in Astronomy and Astrophysics, 7 pages, 6 figure

    New result for the neutron β-asymmetry parameter A_0 from UCNA

    Get PDF
    Background: The neutron β-decay asymmetry parameter A_0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A_0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ≡gA/gV, which under assumption of the conserved vector current hypothesis (gV=1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A_0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A_0. Results: The UCNA experiment reports a new 0.67% precision result for A_0 of A_0=−0.12054(44)_(stat)(68)_(syst), which yields λ=gA/gV=−1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ=gA/gV=−1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were >10%, whereas those in the more recent ones (published after 2002) have been of the scale of <2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results

    Manejo exitoso de macroadenoma hipofisario no funcionante con cabergolina

    Get PDF
    Los adenomas hipofisarios no funcionantes (AHNF) son aquellos que no se acompañan de ninguna manifestación de hipersecreción hormonal. Sus síntomas se deben al efecto compresivo por crecimiento tumoral, y la cirugía transesfenoidal es el tratamiento de elección como terapia inicial, mientras que en aquellos en los cuales no se presente sintomatología se sugiere el manejo expectante. No existe en el momento un tratamiento farmacológico estandarizado para el manejo de los AHNF. Sin embargo, se ha postulado el uso de agonistas dopaminérgicos en la reducción del tamaño de los AHNF. Se presenta el caso de una paciente con un hallazgo incidental de AHNF en contacto con el quiasma óptico, sin manifestaciones clínicas, quien rechazó la intervención quirúrgica, por lo cual se realizó una prueba terapéutica con cabergolina. Después de 6 meses de tratamiento, se realizó una resonancia magnética en la que se evidenció la reducción del volumen tumoral del 73 % sin contacto con el quiasm
    corecore