25 research outputs found

    Clonal Glial Response in a Multiple Sclerosis Mouse Model

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease causing central nervous system (CNS) demyelination and axonal injury. In the last years the importance of astrocytes in MS is rapidly increasing, recognizing astrocytes as highly active players in MS pathogenesis. Usually the role assigned to astrocytes in MS lesions has been the formation of the glial scar, but now their implication during lesion formation and the immune response increasingly recognized. Since astrocytes are a heterogeneous cell population with diverse roles in the CNS, the aim of this study was to analyze the putative clonal response of astrocytes in a demyelinating scenario. To undertake this aim, we used the induced experimental autoimmune encephalomyelitis (EAE) as a murine model for MS in previously electroporated mice with in vivo multicolor lineage tracing system, the StarTrack methodology. Our data revealed a variety of morphological changes that were different among distinct clones. In many cases, cells of the same clone responded equally to the injury, while in other cases clonally-related cells responded differently to the injury. Therefore, whereas some clones exhibited a strong morphological alteration, other clones located at similar distances to the lesion were apparently unresponsive. Thus, at present there is no compelling evidences that clonal relationship influences the position or function of astrocytes in the EAE model. Further, the coexistence of different astroglial clonal responses to the bran injury reveals the significance of development to determine the astrocyte features that respond to brain injuries

    The Link of Inflammation and Neurodegeneration in Progressive Multiple Sclerosis

    Get PDF
    Progressive multiple sclerosis (MS) is characterized clinically by the accumulation of neurological disability without unequivocal recovery. Understanding the mechanisms that determine entering in this stage of the disease is a great challenge in order to identify potential therapeutic targets. Recent advances in defining more accurately the progressive phenotype of MS, have concluded that differences between primary and secondary progressive forms of disease are relatively quantitative rather than qualitative. In both cases, a large number of molecular and cellular events that might lead to neurodegeneration have been suggested. These include microglia activation, chronic oxidative injury, accumulation of mitochondrial damage in axons, age-related disturbances and dysfunctional axonal transport among others. Commonly, these pathological mechanisms have been considered as a result of inflammatory demyelination but a primary degenerative condition has also been argued. It is now clear that both events contribute to the progression of the disease, however their temporal sequence is still a matter of debate. A detailed knowledge of progressive MS pathogenesis will allow to develop effective treatments for both progression and symptom management that should be based on a combination of anti-inflammatory, regenerative and neuroprotective strategies. In this review, we summarize current data and recent hypothesis about pathological forces that drive progression of damage in MS, i.e. cumulative cortical demyelination and neurodegeneration as well as diffuse alterations (microglia activation, axonal injury and atrophy) throughout white and grey matter in the brain and spinal cord. Finally, we discuss the potential of the aforementioned proposed disease mechanisms with regard to developing suitable therapies to halt the progression in MS pathology.Work in our laboratory is funded by CIBERNED, Gobierno Vasco (EJ/GV) and MINECO (SAF2013-45084-R)

    PhDAY 2020 -FOO (Facultad de Óptica y Optometría)

    Get PDF
    Por cuarto año consecutivo los doctorandos de la Facultad de Óptica y Optometría de la Universidad Complutense de Madrid cuentan con un congreso propio organizado por y para ellos, el 4º PhDAY- FOO. Se trata de un congreso gratuito abierto en la que estos jóvenes científicos podrán presentar sus investigaciones al resto de sus compañeros predoctorales y a toda la comunidad universitaria que quiera disfrutar de este evento. Apunta en tu agenda: el 15 de octubre de 2020. En esta ocasión será un Congreso On-line para evitar que la incertidumbre asociada a la pandemia Covid-19 pudiera condicionar su celebración

    A Clonal NG2-Glia Cell Response in a Mouse Model of Multiple Sclerosis

    Get PDF
    © 2020 by the authors.NG2-glia, also known as oligodendrocyte precursor cells (OPCs), have the potential to generate new mature oligodendrocytes and thus, to contribute to tissue repair in demyelinating diseases like multiple sclerosis (MS). Once activated in response to brain damage, NG2-glial cells proliferate, and they acquire a reactive phenotype and a heterogeneous appearance. Here, we set out to investigate the distribution and phenotypic diversity of NG2-glia relative to their ontogenic origin, and whether there is a clonal NG2-glial response to lesion in an experimental autoimmune encephalomyelitis (EAE) murine model of MS. As such, we performed in utero electroporation of the genomic lineage tracer, StarTrack, to follow the fate of NG2-glia derived from single progenitors and to evaluate their response to brain damage after EAE induction. We then analyzed the dispersion of the NG2-glia derived clonally from single pallial progenitors in the brain of EAE mice. In addition, we examined several morphological parameters to assess the degree of NG2-glia reactivity in clonally-related cells. Our results reveal the heterogeneity of these progenitors and their cell progeny in a scenario of autoimmune demyelination, revealing the ontogenic phenomena at play in these processes.This research was funded by research Grants from the Fundación Ramón Areces (Ref. CIVP9A5928), MINECO (BFU2016-75207-R), SAF2016-75292-R, CIBERNED and Gobierno Vasco (IT1203-19).Peer reviewe

    Preparation of a monoclonal antibody to a glycidic epitope of the epidermal growth factor receptor that recognizes inhibitors of astrocyte proliferation and reactive microglia

    No full text
    A mouse monoclonal antibody (5B9), directed against a carbohydrate epitope of human epidermal growth factor receptor (EGFR), recognized an 81-kDalton glycoprotein in buffer-soluble and detergent-solubilized rat brain extracts (BE). The glycoprotein was more abundant in extracts prepared from injured brain than in those from normal tissue. Removal from BE of the antigens recognized by 5B9 increased their astrocyte mitogenic activity. Sections of injured rat brain and cultures derived from damaged brain, enriched in microglia, showed 5B9 immunoreactivity in ED1-positive cells. The abundance of the glycoprotein recognized by 5B9 in injured, relative to normal, tissue, suggested that molecules with EGFR immunoreactivity may be expressed in reactive microglial cells and released after injury.Peer Reviewe

    Pio del Rio Hortega and the discovery of the oligodendrocytes

    Get PDF
    Rio del Rio Hortega (1882-1945) discovered microglia and oligodendrocytes (OLGs), and after Ramon y Cajal, was the most prominent figure of the Spanish school of neurology. He began his scientific career with Nicolas Achucarro from whom he learned the use of metallic impregnation techniques suitable to study non-neuronal cells. Later on, he joined Cajal's laboratory. and Subsequently, he created his own group, where he continued to develop other innovative modifications of silver staining methods that revolutionized the study of glial cells a century ago. He was also interested in neuropathology and became a leading authority on Central Nervous System (CNS) tumors. In parallel to this clinical activity, del Rio Hortega rendered the first systematic description of a major polymorphism present in a subtype of macroglial cells that he named as oligodendroglia and later OLGs. He established their ectodermal origin and suggested that they built the myelin sheath of CNS axons, just as Schwann cells did in the periphery. Notably, he also suggested the trophic role of OLGs for neuronal functionality, an idea that has been substantiated in the last few years. Del Rio Hortega became internationally recognized and established an important neurohistological school with outstanding pupils from Spain and abroad, which nearly disappeared after his exile due to the Spanish civil war. Yet, the difficulty of metal impregnation methods and their variability in results, delayed for some decades the confirmation of his great insights into oligodendrocyte biology until the development of electron microscopy and immunohistochemistry. This review aims at summarizing the pioneer and essential contributions of del Rio Hortega to the current knowledge of oligodendrocyte structure and function, and to provide a hint of the scientific personality of this extraordinary and insufficiently recognized man.Work in our laboratory is funded by CIBERNED, Gobierno Vasco (EJ/GV) and MINECO (SAF2013-45084-R). We thank MM Panicker for reading the manuscript

    Patient Satisfaction with Pre-Hospital Emergency Services. A Qualitative Study Comparing Professionals’ and Patients’ Views

    No full text
    Objective: To describe patient satisfaction with pre-hospital emergency knowledge and determine if patients and professionals share a common vision on the satisfaction predictors. Methods: A qualitative study was conducted in two phases. First, a systematic review following the PRISMA protocol was carried out searching publications between January 2000 and July 2016 in Medline, Scopus, and Cochrane. Second, three focus groups involving professionals (advisers and healthcare providers) and a total of 79 semi-structured interviews involving patients were conducted to obtain information about what dimensions of care were a priority for patients. Results: Thirty-three relevant studies were identified, with a majority conducted in Europe using questionnaires. They pointed out a very high level of satisfaction of callers and patients. Delay with the assistance and the ability for resolution of the case are the elements that overlap in fostering satisfaction. The published studies reviewed with satisfaction neither the overall care process nor related the measurement of the real time in responding to an emergency. The patients and professionals concurred in their assessments about the most relevant elements for patient satisfaction, although safety was not a predictive factor for patients. Response capacity and perceived capacity for resolving the situation were crucial factors for satisfaction. Conclusions: Published studies have assessed similar dimensions of satisfaction and have shown high patient satisfaction. Expanded services resolving a wide number of issues that can concern citizens are also positively assessed. Delays and resolution capacity are crucial for satisfaction. Furthermore, despite the fact that few explanations may be given due to a lack of face-to-face attention, finding the patient’s location, taking into account the caller’s emotional needs, and maintaining phone contact until the emergency services arrive are high predictors of satisfaction

    Inhibition of Casein Kinase 2 Protects Oligodendrocytes From Excitotoxicity by Attenuating JNK/p53 Signaling Cascade

    No full text
    Oligodendrocytes are highly vulnerable to glutamate excitotoxicity, a central mechanism involved in tissue damage in Multiple Sclerosis (MS). Sustained activation of AMPA receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, increase of reactive oxygen species, and activation of intracelular pathways resulting in apoptotic cell death. Although many signals driven by excitotoxicity have been identified, some of the key players are still under investigation. Casein kinase 2 (CK2) is a serine/threonine kinase, constitutively expressed in all eukaryotic tissues, involved in cell proliferation, malignant transformation and apoptosis. In this study, we identify CK2 as a critical regulator of oligodendrocytic death pathways and elucidate its role as a signal inductor following excitotoxic insults. We provide evidence that CK2 activity is up-regulated in AMPA-treated oligodendrocytes and CK2 inhibition significantly diminished AMPA receptor-induced oligodendroglial death. In addition, we analyzed mitogen-activated protein kinase (MAPK) signaling after excitotoxic insult. We observed that AMPA receptor activation induced a rapid increase in c-Jun N-terminal kinase (JNK) and p38 phosphorylation that was reduced after CK2 inhibition. Moreover, blocking their phosphorylation, we enhanced oligodendrocyte survival after excitotoxic insult. Finally, we observed that the tumor suppressor p53 is activated during AMPA receptor-induced cell death and, interestingly, down-regulated by JNK or CK2 inhibition. Together, these data indicate that the increase in CK2 activity induced by excitotoxic insults regulates MAPKs, triggers p53 activation and mediates subsequent oligodendroglial loss. Therefore, targeting CK2 may be a useful strategy to prevent oligodendrocyte death in MS and other diseases involving central nervous system (CNS) white matter
    corecore