30,303 research outputs found
Influence of Quaternary Benzophenantridine and Protopine Alkaloids on Growth Performance, Dietary Energy, Carcass Traits, Visceral Mass, and Rumen Health in Finishing Ewes under Conditions of Severe Temperature-humidity Index.
Twenty Pelibuey×Katahdin ewes (35±2.3 kg) were used to determine the effects of the consumption of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on growth performance, dietary energetics, visceral mass, and ruminal epithelial health in heat-stressed ewes fed with a high-energy corn-based diet. The basal diet (13.9% crude protein and 2.09 Mcal of net energy [NE] of maintenance/kg of dry matter) contained 49.7% starch and 15.3% neutral detergent fiber. Source of QBA+PA was Sangrovit RS (SANG) which contains 3 g of quaternary benzophenathridine and protopine alkaloids per kg of product. Treatments consisted of a daily consumption of 0 or 0.5 g SANG/ewe. Ewes were grouped by weight and assigned to 10 pens (5 pens/treatment), with two ewes per pen. The experimental period lasted 70 days. The mean temperature humidity index during the course of this experiment was 81.7±1.0 (severe heat stress). There were no treatment effects on water intake. Dry matter intake was not affected (p = 0.70) by treatments, but the group fed SANG had a numerically (11.2%) higher gain in comparison to the control group, SANG improved gain efficiency (8.3%, p = 0.04), dietary NE (5.2%, p<0.01) and the observed-to-expected NE (5.9%, p<0.01). Supplemental SANG did not affect (p≥0.12) carcass characteristics, chemical composition of shoulder, and organ weights (g/kg empty body weight) of stomach complex, intestines, and heart/lung. Supplemental SANG decreased liver weight (10.3%, p = 0.02) and increased visceral fat (16.9%, p = 0.02). Rumen epithelium of ewes fed SANG had lower scores for cellular dropsical degeneration (2.08 vs 2.34, p = 0.02), parakeratosis (1.30 vs 1.82, p = 0.03) and neutrophil infiltration (2.08 vs 2.86, p = 0.05) than controls. It is concluded that SANG supplementation helped ameliorate the negative effects of severe heat on growth performance of feedlot ewes fed high-energy corn-based diets. Improvement in energetic efficiency may have been mediated, in part, by anti-inflammatory effects of supplemental SANG and corresponding enhancement of nutrient uptake
Oversampling in shift-invariant spaces with a rational sampling period
8 pages, no figures.It is well known that, under appropriate hypotheses, a sampling formula allows us to recover any function in a principal shift-invariant space from its samples taken with sampling period one. Whenever the generator of the shift-invariant space satisfies the Strang-Fix conditions of order r, this formula also provides an approximation scheme of order r valid for smooth functions. In this paper we obtain sampling formulas sharing the same features by using a rational sampling period less than one. With the use of this oversampling technique, there is not one but an infinite number of sampling formulas. Whenever the generator has compact support, among these formulas it is possible to find one whose associated reconstruction functions have also compact support.This work has been supported by the Grant MTM2009-08345 from the D.G.I. of the Spanish Ministerio de Ciencia y TecnologĂa
From vertex detectors to inner trackers with CMOS pixel sensors
The use of CMOS Pixel Sensors (CPS) for high resolution and low material
vertex detectors has been validated with the 2014 and 2015 physics runs of the
STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner
tracking devices, with 10-100 times larger sensitive area, which require
therefore a sensor design privileging power saving, response uniformity and
robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was
considered as too poorly suited to upcoming applications like the upgraded
ALICE Inner Tracking System (ITS), which requires sensors with one order of
magnitude improvement on readout speed and improved radiation tolerance. This
triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz
180 nm, for the design of a CPS well adapted for the new ALICE-ITS running
conditions. This paper reports the R&D results for the conception of a CPS well
adapted for the ALICE-ITS.Comment: 4 pages, 4 figures, VCI 2016 conference proceeding
- …