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Oversampling in Shift-Invariant Spaces With a
Rational Sampling Period

A. G. García, M. A. Hernández-Medina, and G. Pérez-Villalón

Abstract—It is well known that, under appropriate hypotheses,
a sampling formula allows us to recover any function in a principal
shift-invariant space from its samples taken with sampling period
one. Whenever the generator of the shift-invariant space satisfies
the Strang–Fix conditions of order , this formula also provides
an approximation scheme of order valid for smooth functions.
In this paper we obtain sampling formulas sharing the same fea-
tures by using a rational sampling period less than one. With the
use of this oversampling technique, there is not one but an infinite
number of sampling formulas. Whenever the generator has com-
pact support, among these formulas it is possible to find one whose
associated reconstruction functions have also compact support.

Index Terms—Approximation order, oversampling, sampling in
shift-invariant spaces, shift-invariant spaces.

I. INTRODUCTION

T HE sampling theory in shift-invariant spaces, in partic-
ular in wavelets subspaces, has been largely studied in the

last few years. As pointed out by Unser in [16], an appropriate
choice for the generator (for instance, a B-spline) eliminates
some of the problems associated with the classical Shannon’s
sampling theory; in particular, those related to the slow decay
of the function. Thus, we consider a shift-invariant space

where the function is a stable generator, i.e., the
sequence is a Riesz basis for . The starting
point of the sampling theory in (see [1] and [17]) is that,
under appropriate hypotheses, any function can be re-
covered from a sequence of samples taken with sampling period

, by means of the sampling formula

(1)
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The involved reconstruction function is given by

(2)

where is the sequence whose -transform is
which is assumed to be stable, i.e., there

exist two positive constants such that
a.e. on . In other words, any can be

recovered from the discrete prefiltering of its samples:
, by .

Due to the good approximation properties from shift-in-
variant spaces (see [4], [11], and [14]), the scaling of the sam-
pling formula (1) allows us to approximate regular functions
from a sequence of samples taken with a small sampling period

. Specifically, if the generator satisfies the Strang–Fix
conditions of order [see infra (12)] then, any function in
the Sobolev space
satisfies

(3)

where the constant does not depend on and (see [9]–[11]),
and denotes the derivative operator of order .

Whenever is not an FIR filter, which almost always
happens (see [8]), the reconstruction function does not have
compact support, even when the generator has it. A reconstruc-
tion function with compact support implies low computa-
tional complexity and avoids truncation errors. In the case of
sequence in (2) being finite, the reconstruction func-
tion could inherit most of the good properties of the generator

. In particular, the function would have compact support if
does. Unfortunately, the coefficients form, in gen-

eral, an infinite sequence. An important exception occurs when
the generator is the B-spline of degree 1 where the Strang–Fix
conditions of order 2 are satisfied.

The approximation in (3) is an interpolation scheme, i.e.,
. Another possibility is to use a

quasi-interpolation scheme, where the above interpolation con-
dition holds for polynomials of degree . This quasi-inter-
polation technique allows us to get suitable FIR filters for the
aforementioned sampling problem (see [3]).

In this work we study the recovery of functions in
from their samples taken with a rational sampling period

, instead of , and their related approxi-
mation schemes. By using this oversampling technique, many
infinite sampling formulas do exist and some of them involve
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compactly supported reconstruction functions
instead of only one. In other words, it entails an FIR filter-bank,
instead of an IIR filter. This could be suitable, specially, when
the involved filters have small support.

The paper is organized as follows. In Section II, we obtain the
sampling formulas valid for a shift-invariant space larger that

by using samples taken at a rational sampling period less
than one. We also prove that these sampling formulas satisfy
an approximation property as in (3), whenever satisfies the
Strang–Fix conditions of some fixed order. Section III is devoted
to the existence and computation of reconstruction functions
with compact support in the particular case of .
Finally, an Appendix includes the technical proofs of the results
given in Sections II and III.

II. SAMPLING FORMULAS WITH RATIONAL SAMPLING PERIOD

In order to obtain an approximation result like (3) which in-
volves the -norm, we first deduce sampling formulas valid
for a subspace of larger than . Indeed, some extra
conditions on the stable generator in allows us to work
in the shift-invariant space

Specifically, throughout this paper we assume that the stable
generator is a continuous function on having some decay
property. In fact, we assume that belongs to the Wiener space

. Recall that

Note that (see
[5]). Observe that implies

and .
Thus, the space coincides with the closed subspace in

generated by the integer shifts of (see [11]), and it is a
space of continuous functions [10]. Observe that any generator
satisfying for some and
belongs to ; in particular, any compactly supported
generator . We also assume that the sampling period is a
rational sampling period less than or equal to 1: ,

.
We split the theoretical discussion into two separate subsec-

tions.

A. The Perfect Reconstruction Process

In order to introduce some notation and the main ideas in the
present work, let us first consider the recovery of a function in
the linear span of the sequence , i.e., a function

of the form where is
a finite sequence. Its samples taken at the points
admit a simple expression in terms of the sequence .
Specifically

and, for , we have

where ,
and denotes the usual convolution op-

erator. Computing the z-transform in the above equality (notice
that ), we obtain that

(4)

where , , and are the -transforms of ,
, and , respectively. The matrix form of equations in (4)

reads as

(5)

where is the matrix defined by

(6)

The reader who is familiar with the filter-bank theory can ob-
serve that the matrix coincides with the polyphase matrix
of a related filter-bank. The important relationship between the
filter-banks theory and sampling in shift-invariant spaces was
established in [8] and [15].

Equality (5) shows the important role of the left inverse ma-
trices (if any) of for the problem that we are dealing with.
Any left inverse of the matrix , defined in , al-
lows us to recover the functions ; as
a consequence, any function can be re-
covered from its samples. However, as we are mainly interested
in left inverses of leading to a result like (3), we only con-
sider those whose entries belong to the class

The next lemma gives a necessary and sufficient condition for
the existence of such left inverses. As usual, we denote by
the transpose conjugate of the matrix .

Lemma 1: Assume that is a continuous generator in
, and let be the matrix defined in (6).

There exists a matrix with entries in and satisfying

(7)
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if and only if has full rank on , i.e.,
on . If these equivalent condi-

tions hold, one of these left inverses is the pseudo-inverse
. Any other left inverse

is given by

where is any matrix with entries in .
See the proof in the Appendix.
Notice that if there exists a unique left inverse

but if there are many left inverses. Associated with each
of these left inverses

we consider reconstruction functions , ,
defined in the following way: As we can express

in a unique way as

where . For , let
be the sequence defined by ,

when , , . In other
words, the sequences , , are those such that

Next, consider the functions

(8)

The following theorem gives, for each one of the aforesaid
left inverse matrices , a sampling formula which allows us
to recover, from its samples taken at the points , any
function in .

Theorem 1: Assume that the generator is continuous on
and belongs to . Let be a matrix with
entries in and satisfying (7). Then, for any

(9)

where the sampling functions , , are given
by (8). The series in (9) converges absolutely and uniformly on

.
See the proof in the Appendix . Notice that formula (9) can

be understood as follows: After the discrete prefiltering of the
samples of via a filter-bank [see (8)]

we recover by .

B. The Approximation Scheme

Recall that we have assumed that is a stable generator for
; equivalently, there exist two constants such

that , where
denotes the Fourier transform of . The or-

thogonal projector of onto is given by

(10)

where the dual function is given by

(11)

Since the sequence is a Riesz sequence for
, the operator , defined by (10), is also a projector of

onto (see [11, Theorem 5.2]).
In what follows we need some further decay for the generator

. For a fixed , assume that the function
. Hence, the generator decay fast enough, so that the

derivatives exist and are continuous functions for .
If the generator satisfies the Strang–Fix conditions of order ,
i.e.,

(12)

then the operator provides approximation order in the
Sobolev space . Specifically (see [11, Theorem 5.2]),
for any we have

(13)

where , and is a constant independent of
and . In next theorem we deduce, from this result, that the
sampling formula (9) also provides approximation order in
the Sobolev space . Thus, any function in can
be approximated from its samples at taking
small enough. The validity of this approximation technique for
the signal processing community was pointed out by Unser and
Daubechies in [14]. See also the subsequent [3].

Theorem 2: Assume that is a continuous stable generator
such that . Let be a
matrix with entries in and satisfying (7). If the generator
satisfies the Strang–Fix conditions of order then, for any

, we have

(14)

where the reconstruction functions , , are
given by (8) and is a constant independent of and .

See the proof in the Appendix .
Notice that the B-spline of degree satisfies the hy-

potheses in the theorem for .
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III. COMPACTLY SUPPORTED RECONSTRUCTION

FUNCTIONS

In this section, we assume that the generator has com-
pact support. Then the entries of the matrix are Lau-
rent polynomials. If the matrix has a left inverse

whose entries

are also Laurent polynomials, then the sum in (8) giving the cor-
responding reconstruction functions , ,
will be finite. Therefore, the reconstruction functions can be
easily calculated and they inherit most of the good features of
the generator ; in particular, they will have compact support.

In [12, Theorem 1] there is a necessary and sufficient con-
dition for the existence of a polynomial left inverse of a given
polynomial matrix. The same proof, with minor modifications,
applies when we consider Laurent polynomial, obtaining the
following theorem.

Theorem 3: Let . A matrix whose entries
are Laurent polynomials has a left inverse whose entries are also
Laurent polynomials if and only if for all
or, equivalently, if the greatest common divisor of the
minors of is a monomial.

The proof of this theorem is constructive, i.e., it gives a poly-
nomial left inverse matrix involving, in general, a high degree.
See [12] and the references therein for other methods to com-
pute a polynomial left inverse matrix. Next, we give an effective
method for the important case of minimum oversampling rate.

A. The Case of the Sampling Period for

In order to introduce the lowest oversampling rate it is advis-
able to take the sampling period , i.e.,
for . Without loss of generality we can assume that

for some . Indeed, if then we could
consider the generator , where denotes the
integral part of ; it is evident that and

.
If we take , then the matrix has a

simple expression. Namely, where the
matrices and given by

satisfy , whenever , , and
, whenever or ,

i.e., they look like

...
... . .

. ...
...

...
...

...
...

...
...

...
...

(15)

and

...
...

... . .
. ...

...

...
... . .

. ... . .
. ...

...

(16)

We are concerned in the computation of a polynomial left in-
verse (if any) of the polynomial matrix . Whenever
or , it is straightforward to obtain, under mild conditions,
an scalar left inverse of .

Next we deal with the general case . To this end, con-
sider the square matrix defined by

. . .
. . .

(17)

where the block is repeated times, is the first row of
without the first entry and, is the
matrix obtained by deleting the first column in , i.e.,

and .

Assuming that is a nonsingular matrix in
we obtain a polynomial left in-

verse of the matrix of degree as follows: Consider
the matrix formed with the last rows of
the inverse matrix partitioned its columns as follows:

where

Obviously, it satisfies

where denotes the zero matrix. That is,

(18)
Now, we prove that

(19)
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is a polynomial left inverse of the matrix .
Indeed

Having in mind (18), that since the
first row of is null, and that

since and the first column of is null, we conclude
that .

Using that ,

we obtain that the reconstruction functions corresponding to this
left inverse are

(20)

Notice that, for , the reconstruction function
is a linear combination of shifts of the generator and
it has its support in the interval , while is
supported in the interval . The above procedure
can be gathered as a theorem.

Theorem 4: Assume that and take
such that . For the sampling period the as-
sociated polyphase matrix in (6) can be written
as where the scalar matrices and

are described in (15)–(16). If the
matrix in (17) is nonsingular, then the matrix possess
a polynomial left inverse given in (19) from which we
obtain the compactly supported reconstruction functions ,

, given in (20).
Finally, it is worth mentioning that work in progress allows us

to guess that reconstruction functions (20) have minimal support
when is the smallest natural number .

B. A Toy Example Involving the Quadratic B-Spline

Consider the generator , the quadratic B-spline

.

This generator is suitable for computations and it satisfies the
Strang–Fix conditions of order . As
we could take , i.e., the sampling period . The
corresponding 4 3 matrix is

The polynomial left inverse above computed (19) gives us
the reconstruction functions [see (20)]

From Theorem 1, we obtain that, any can be expanded
as

(21)

Moreover, from Theorem 2 we deduce that, for any
we have

(22)

where is a constant independent of and . In other words,
the sampling formula (21) allow us to recover any function in

from its samples taken at the points , and to
approximate any function in with order 3. The
reconstruction functions are supported in the in-
terval , whilst is supported in the interval .

C. A Comparison With the Orthogonal Projector

Blue and Unser gave in [2] an expression for the -error
valid to an ample set of approximation schemes of functions

. In our
approximation scheme (14), it reads (see the Appendix ):

(23)
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The kernel is given by

(24)

where , and .
Moreover, gives exactly the average ap-
proximation error (see [2, Theorem 2]). In particular, when the
sampling period is , i.e., , the kernel can be ex-
pressed as

where , is the dual function
(11), and is the kernel cor-
responding to the orthogonal projector (10) (see [3]). This ex-
pression for the error provides a criterion in order to get an ap-
proximation scheme close to the orthogonal projector. Namely,
in cases where most of the spectral energy is concentrated in a
neighborhood of , we could try to find a matrix (sat-
isfying ) such that

(25)

for a big enough , and having at the same time reconstruction
functions with small support. Notice that this technique has
been borrowed from [3] (see also [6] and [7]) where quasi-in-
terpolating schemes are used.

For instance, we consider the generator
, i.e., the centered quadratic B-spline, and sampling

period . In this case, the matrix reads:
; its polynomial left inverse

matrices are described by

where is any Laurent polynomial. Having in mind that

(see [3]) we obtain that, for any choice of , estimation (25)
for holds. It is one order more than the expected one
(we have approximation order 3) which is explained because, in
this example,
where are even functions. The choice gives the
reconstruction functions with small support,
and , and the associated
approximation scheme reads

The choice gives , being the reconstruc-
tion functions, and

.
The choice gives with re-
construction functions with a bigger support.

Finally, let us give a numerical simulation showing the be-
havior of the studied approximation formulas. We apply the
above formulas to approximate the Gaussian function

from 80 samples taken in the interval with sam-
pling period 0.1. The formula obtained for the choice ,
which has the smallest support, gives an -norm error equal
to . The formula obtained for the choice

, which is closer to the orthogonal projector, gives an
error equal to . The formula (22) obtained in the pre-
vious section gives an error equal to . This error is
smaller due to less oversampling being introduced ,
but its bigger support implies more computations than in the
first one. Classical quadratic interpolation formula gives an error
equal to . This error is the smallest one (oversampling
is not used here), but it implies more computations than in the
previous cases. For the last estimation we have used the approx-
imation for the quadratic
interpolating spline. Other numerical experiments show a sim-
ilar behavior.

APPENDIX

In this Appendix , we include the technical proofs of the re-
sults in Sections II and III.

Proof of Lemma 1: Notice first that the pointwise multipli-
cation is a closed operation in . Moreover, the Wiener’s lemma
(see, e.g., [13]) establishes that if and on

, then the function is also in . Notice also that the
entries of the matrix belong to , since we have assumed
that . If has a left inverse on then

has full rank on .
Reciprocally, if has full rank on or, equivalently,

if on , then the pseudo-inverse
does exist on . It is a

left inverse of and its entries belong to by the Wiener’s
lemma.

It can be checked that ,
where is a matrix with entries in , is a left in-
verse of with entries in . Moreover, if is a left in-
verse of with entries in , it can be expressed as

by taking .
In proving Theorem 1 and Theorem 2, the sampling operator
, formally defined as

(26)

will play an important role; defining in , the space of
continuous and bounded functions endowed with the -norm,
the following result holds.

Lemma 2: Under the hypotheses of Theorem 1, the sam-
pling operator is a well-defined bounded operator from

to .

Authorized licensed use limited to: Univ Carlos III. Downloaded on January 8, 2010 at 08 26 from IEEE Xplore.  Restrictions apply. 



3448 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

Proof: For , we have

(27)

Thus, for every , the function belongs to
, and the sampling operator is well-defined; notice

also that the functions , , belong to the
Wiener space . Moreover

As a consequence, we obtain that for some
constant independent of , which proves the lemma.

Proof of Theorem 1: First, we prove that the sampling for-
mula (9) is satisfied for any function in ,
i.e., for any of the form where

is a finite sequence. Notice that the z-transform estab-
lishes a biyection between the space and the class ,
where the convolution operator in corresponds to the mul-
tiplication of functions in .

From (5), and using that is a left inverse to , we
obtain

Observe that is the z-trans-
form of the sequence . Then, for

, we have

Hence

This formula allows us to recover the finite sequence
from the samples. As a consequence, the function

can be recovered in the following
way:

Next we prove that the sampling formula (9) holds for every
function in . The sequence of
functions in converges to

uniformly on because

and . Since
we have that .

From Lemma 2, is a bounded operator in . Denoting
by its norm, for every , we get

from which we deduce that for each or, in
other words, the sampling formula (9) holds in .

It remains to prove the absolute and uniform convergence
of the series in (9). As , we have that

. Since converges uniformly to on
we have that . Using (27), we obtain

for , and . From this inequality,
using that and that we
deduce that the convergence of the series in (9) is absolute and
also uniform on .

Proof of Theorem 2: Let ; the
operator defined in (10) projects onto . In par-
ticular, . Hence, using Theorem 1 we obtain

, where is the sampling operator
defined in (26) and, consequently
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Using this equality, we obtain

where and denote the norms of the opera-
tors which coincide (see
Lemma 2). Finally, the theorem follows from inequality (13).

Proof of the Error Formula (23): It can easily checked that

where , and
is given by

where denotes the Dirac delta. Hence, by applying [2, The-
orem 1], the error formula (23) is obtained. By using that

we obtain

and, as a consequence, .
Hence, as , we obtain the expression
of the kernel (24).
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